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SUMMARY: Highly excited atoms acquire very large dimensions and can be
present only in a very rarified gas medium, such as the interstellar space. Multiply
excited beryllium-like systems, when excited to large principal quantum numbers,
have a radius of r ∼ 10 µ. We examine the semiclassical spectrum of quadruply
highly excited four-electron atomic systems for the plane model of equivalent elec-
trons. The energy of the system consists of rotational and vibrational modes within
the almost circular orbit approximation, as used in a previous calculation for the
triply excited three-electron systems. Here we present numerical results for the
beryllium atom. The lifetimes of the semiclassical states are estimated via the cor-
responding Lyapunov exponents. The vibrational modes relative contribution to
the energy levels rises with the degree of the Coulombic excitation. The relevance
of the results is discussed both from the observational and heuristic point of view.
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1. INTRODUCTION

Quantum mechanical description of atomic
structure has been successfully applied for not highly
excited few-electron systems. However, as the de-
gree of excitations increases direct application of
the quantum mechanical formalism becomes cum-
bersome (see e.g. Bao 1993, 1994), due to a strong
mixing of many states (e.g. Nicolaides et al. 1993,
Kominos and Nicolaides 1994) and semiclassical cal-
culations turn out more feasible. (For the triply ex-
cited lithium see the recent comprehensive review by
Madsen (2003)). Semiclassical models appear partic-
ularly suitable for those few-electron configurations
which possess a high degree of spatial symmetry (e.g.
Grujić 1999). As the quantum mechanical calcula-
tions have shown, these symmetrical configurations
are gradually attained as the degree of excitation,

characterized by the principal quantum number n,
rises. In the case of the intrashell quadruple exci-
tations (2 ≤ n ≤ 6), the electrons tend to acquire
positions at the vertices of a tetrahedron and a sim-
ple Rydberg formula provides a plausible estimate
of the energy spectrum (Komninos and Nicolaides
1994). Recent calculations by Poulsen and Madsen
(2005a, 2005b) and Morishita and Lin (2005) confirm
that the tetrahedral configuration describes reason-
ably well a number of low-lying quadruply excited
states.

Multiply excited atoms have been reported
under laboratory conditions, but only for the low de-
gree of excitation, as with recent results by Hasegawa
et al. (2006) on the multiple photo-excitation of
beryllium by the synchrotron radiation. The so
called hollow atoms with configurations (2s22p3s)
(double excitation) and (1s3s23p) (triple excitation)
have been produced.
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Highly excited few-electron states belong to
the so called small energy system case. They can be
achieved by the near-threshold collisional processes
(Simonović and Grujić 1996, Kuchiev and Ostrovsky
1998) or by synchrotron radiation photo-excitations.
In the former case small-energy electrons tend to ex-
change their angular momenta and acquire very high
values of the latter, even if the total angular momen-
tum is small. On the other hand, photo-ionization
may result in the total high angular momentum of
the system in its final states. Another process that
may result in highly multiply excited states is the
electron capture via the charge-exchange collisions
in plasma. For the classical configurations with sin-
gle electron, orbital momenta quantum numbers high
and close to their maximum values, electron paths
are well approximated by circular orbits. These or-
bits turn out unstable, and this corresponds to the
metastable quantum states. By applying standard
semiclassical quantization rules, one can evaluate ro-
vibronic energy spectra, as was done for two and
three-electron multiply excited systems (Grujić 1988,
1999). Further, by evaluating the corresponding Lya-
punov exponents, a lifetime of these periodic orbits
can be estimated (Cvejanović et al. 1990).

In the recent paper the quadruple excitation
of beryllium has been examined within a semiclassi-
cal model (Simonović and Grujić 2007). Apart from
making use of the Newtonian formalism instead of
the Hamiltonian one, the present calculations differ
from those in a number of other respects. First, we
deal here with very highly excited states, which al-
lows a number of approximations to be made. The
first of them is neglecting of the inertial effect, which
appear via Coriolis force. Second, we employ the
quantization rules appropriate to the Coulombic sys-
tems, rather than to the rotor-like objects. By
neglecting weak couplings between different mode-
subspaces, we are able to evaluate approximately the
ro-vibronic spectrum for the highly excited states.

The general procedure for calculating semi-
classical energies and lifetimes is as follows. One
first finds periodic classical orbits and then applies
standard quantization rules to quantize the energy
spectrum. In the next section we quote two of pos-
sible classical models and carry out calculations for
the plane configuration. In section 3 the energy spec-
trum of the beryllium atom is evaluated and in the
last section we discuss the results and feasibility of
their experimental verifications.

2. THE SEMICLASSICAL MODELS

Similarly to the continuum states, the first
step in establishing the classical model is to set up
the skeleton, equilibrium configuration, which cor-
responds to the so called leading (scaling) configu-
rations in the near-threshold regime. In the planar
case there is a strong analogy between the bound
and continuum states symmetry, as in the case with
the three electron system (Grujić 1999). However,
moving to three dimensional configuration this anal-
ogy is partially lifted. Namely, the central symmetry

present in the free motion case goes into a more re-
stricted symmetry for the bound motion. This is a
direct consequence of the change of the active de-
grees of freedom. In the near-threshold kinematics
the main direction is the radial one, whereas for the
negative energy states it is the angular motion that
supports the bounded motion. In determining the
skeleton configuration, one first establishes the static
one and then finds dynamical equilibrium state. The
most convenient way to examine few-body systems
is to make use of the spherical collective coordinates,
namely

ϑij = 6 (~ri, ~rj) − mutual angle, (1)

αi1 = arctan(ri/r1) − hyperangle, (2)

where ri are radial coordinates of the particles from
the centre of mass of the entire system, and

R2 =
∑

r2
i , − hyperradius. (3)

Generally, to find the static skeleton configu-
ration one calculates the minimum of the potential
function

V (α, ϑ, R) = C(α, ϑ)/R, (4)

on the hypersphere R = R0 = const. In practice,
one selects in advance obvious candidates with ap-
propriate symmetry and then examines the corre-
sponding potential functions. In the bounded mo-
tion case, the static equilibrium configuration may
differ considerably from the kinematic skeleton, due
to angular (transverse) motion, which is necessary to
maintain the dynamic equilibrium.

We shall distinguish two classes of classical
configurations, upon which one can apply semiclas-
sical quantization. These are (i) large-amplitude os-
cillatory (see, e.g. Bao 1992) and (ii) rovibronic con-
figurations. We examine here some rovibronic mod-
els with a high degree of symmetry. Our approach
differs from the quantum mechanical models with a
fixed radial coordinate, so called frozen-r approxima-
tion (see, e.g. Bao 1998). To emphasize the differ-
ence and in view of the later choice of the quanti-
zation procedure, it is in order to classify the mod-
els employed in our semiclassical calculations. More
precisely, one must make a choice between Coulom-
bic few-electron system paradigm and molecule-like
models.

Because of the regular spacing of the electrons
in the case of a symmetrical configuration, one may
consider such systems as rigid bodies which preserve
their shape within the kinematics they are subjected
to. But this appearance is deceiving, for the Coulom-
bic systems obey different dynamic laws as com-
pared with the rigid bodies. For instance, a change
in the angular velocity, resulting in the correspond-
ing change of the angular momentum results in the
change of the shape of the system. In the case of
a purely rotational motion, this change means ex-
panding or shrinking of the radial distances from the
rotation axis. If we restrict ourselves to the angular
momentum only, a change of its magnitude results
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in new Keplerian orbits, for instance, with different
eccentricities. Contrary to this, a rigid body, like a
rigid rotator, preserves its shape, but changes its an-
gular velocity. These quantitative differences in dy-
namical behaviour are well reflected in the quantiza-
tion rules which are imposed to the rotating Coulom-
bic and rotor-like systems.

Regular structures in the few-electron systems
indicate correlated motions. These correlations are
subjected to stable and unstable modes perturba-
tions. The former are directed transversely to the
electron radii, whereas the latter are along the radial
coordinate. This sort of instability is absent from the
molecule-like systems, which are based on different
kind of interaction, like Morse potential. Generally,
correlations transversely to the radii from the rota-
tion axis are constructive, as opposed to those along
the radial distance, which destroy the rotating struc-
ture. Within the context of the small-energy systems
destructive correlations govern the near-threshold
behaviour of a fragmentation function, and in the
case of a quasi-bounded motion these instabilities de-
termine the lifetime of the negative-energy systems.

Generally, making use of the molecule
paradigm it is possible to extract a number of sym-
metry features useful for the classification of states
(see. e.g. a recent paper by Walter et al. (2000)), but
the attempts to push the analogy with the molecule
paradigm too far did not fulfill early expectations
(see, e.g. the recent papers by Madsen and Molmer
(2001, 2002).

2.1. Beryllium-like T1 model

We examine first the tetrahedron-like configu-
ration subject to the rotation around one of its prin-
cipal axes, which has S2 symmetry (Landau and Lif-
shitz 1965), and which we designate as T1 model,
as shown in Fig. 1. This model was investigated by
Bao (1998) in the context of the quantum mechanical
qualitative analysis of the low-lying intrashell states.

ρ 21

3

4

z

y

x

Q

h

Fig. 1. Tetrahedron configuration skeleton model
for the four-electron system.

By balancing Coulomb and centrifugal forces
(zero radial force condition) one has (we use atomic
units h̄ = e = me = 1, throughout)

Ω2 =
1

4ρ3
− Q

(ρ2 + h2)3/2
+

2
[2(ρ2 + 2h2)]3/2

, (5)

where Ω is the angular velocity of the system and
h the half-distance between the opposite sides along
z-axis (see Fig. 1). From (5) one has

Q <
(ρ2 + h2)3/2

2

[
1

2ρ3
+

√
2

(ρ2 + 2h2)3/2

]
. (6)

From the requirement that the net Z (axial)
component of the force which any of the four elec-
trons experiences the FZ = 0, one has

Qh

(ρ2 + h2)3/2
−

√
2h

(ρ2 + 2h2)3/2
= 0. (7)

Apart from the trivial solution h = 0 (planar case),
when the central charge must satisfy the inequality

Q >
1
4

+
1√
2
, (8)

for the bound state to be possible (attractive cen-
tripetal force), for h 6= 0 from (7) one has

1
2

< Q <
√

2, (9)

that yields Q = 1 for the real atomic systems. Hence,
it turns out that the model works only for H3− an-
ions, provided no further restrictions on Q are im-
posed.

2.2. Beryllium-like P1 model

This is an essentially planar quadratic configu-
ration model, with the nucleus situated at the centre
and electrons rotating around the axis perpendicular
to the plane, as shown in Fig. 2. Oscillations around
the skeleton equilibrium points (stable modes) are al-
lowed, as well as radial deviations (unstable modes).

1
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1

Fig. 2. Planar configuration four-electron rovi-
bronic model.
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3. ROVIBRONIC SPECTRUM

As stressed above we consider rovibronic mo-
tion as a superposition of rotational and vibrational
motions of the equivalent electrons, without invok-
ing the concept of a (rigid) rotor. We first find dy-
namic equilibrium configurations, by writing the cor-
responding Newton’s equations for the electrons in
the field of an infinitely heavy charge Q

d2ri

dt2
=

∑

i 6=j

rij

r3
ij

−Q
ri

r3
i

, i 6= j = 1, 2, 3, 4. (10)

These equations are then solved subject to the
quantization condition

L = L +
1
2
, L = 0, 1, 2, ... (11)

where L (= 4`e) denotes the angular momentum of
the entire system. This provides the third equation

Ω =
L + 1

2

4ρ2
. (12)

The semiclassical approximation applies for L À 1,
and one obtains, in the zero approximation, a stan-
dard semiclassical spectrum (see e.g. Eqs. (4-9) in
Grujić 1999)

E
(0)
L = − 72 Q2

eff

(2L + 1)2
, (13)

with the effective charge given by

Qeff = Q− µP1, µP1 =
1√
2

+
1
4

= 0.95711. (14)

The screening parameter µP1 is model dependent.
Now, we allow for the small deviations from the skele-
ton configuration

ri = (ρ + ∆i)n(i)
ρ + δin

(i)
φ +∇ik,

∆i, δi,∇i << r, nρ⊥nφ⊥k, (15)

where n and k are unit vectors in the correspond-
ing directions. We consider the kinematics of small
variations by inserting Eq. (15) into Newton’s equa-
tions (10). In order to get corresponding equations it
is convenient to pass to the comoving reference sys-
tem, and neglect the coupling between the radial and
tangential motions (Coriolis force). In this rotating
frame (Ω′ = 0) we impose the following constraint

L′ = 0 (zero angular momentum), (16)

that gives
∇1 = ∇3, ∇2 = ∇4, (17)

δ1 + δ2 + δ3 + δ4 = 0. (18)

3.1. In-plane deviations

In Fig. 3 we show two possible oscillatory
modes for the four-electron system. Since these
decouple from those perpendicular to the skeleton
(Oxy) plane, they are evaluated separately. Hyper-
sphere constraints demand

Fig. 3. Two possible vibration modes for the in-
plane oscillations.

4∑

i=1

r2
i ≡ R2 = 4ρ2, (19)

providing

∆1 + ∆2 + ∆3 + ∆4 = 0, (20)

and this reduces the dimensionality of the system to
8. At fixed r

(0)
i = ρ

(0)
i , for the small deviations, one

obtains the matrix equation (see Grujić 1983)

D2IF = B(8)F, D2 ≡ r3 d2

dt2
, (21)

where I is the unit matrix, F is the column vector

F = {δ1, δ2, δ3, δ4, ∆1,∆2, ∆3,∆4}T
, (22)

T denotes the row transposition, and

B(8) =





a 3b 1
8 3b 0 b 0 −b

3b a 3b 1
8 −b 0 b 0

1
8 3b a 3b 0 −b 0 b
3b 1

8 3b a b 0 −b 0
0 −b 0 b c −3b − 1

4 −3b
b 0 −b 0 −3b c −3b − 1

4
0 b 0 −b − 1

4 −3b c −3b
−b 0 b 0 −3b − 1

4 −3b c





,

(23)
with
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a =
1
8
(1−

√
8)−Q, b =

√
2

8
, c = 2Q− 1

4
(1+

√
2).

(24)
To solve (21), one can follow the standard pro-

cedure from the theory of small oscillations (see e.g.
Simonović and Grujić 2007), which basically reduces
to diagonalizing B(8). The general solution of (21)
consists then of a mixture of all possible frequen-
cies of the modes present, for the harmonic and anti-
harmonic motions around the corresponding equilib-
rium points. This rigorous procedure, however, con-
ceals the underlying dynamics and the transparency
of the physical picture is lost. We shall adopt, there-
fore, a different strategy in order to estimate the rel-
evant eigenvalues and the associated proper frequen-
cies (see later). We first evaluate radii of the elec-
trons’ circular paths, by balancing centripetal and
centrifugal forces, taking into account quantization
condition (11)

rL =
(2L + 1)2

64Qeff
. (25)

3.2. In-plane vibrations

As we noted above, we avoid direct procedure
of diagonalization of matrix B(8) and consider ∆ and
δ subsystems from (21) separately, neglecting in (23)
matrix elements which couple these two subspaces.

We start with the submatrix

Bδ
(4) =





a 3b 1
8 3b

3b a 3b 1
8

1
8 3b a 3b
3b 1

8 3b a





. (26)

Making use of the constraint (17), matrix Bδ
(4) is

transformed into

Bδ
(3) =





a− 3b 0 1
8 − 3b

3b− 1
8 a− 1

8 3b− 1
8

1
8 − 3b 0 a− 3b



 . (27)

Generally, one proceeds by diagonalizing Bδ
(3)

as given by (27), but we shall adopt a shortcut for
a simple estimate of the system vibrational motion.
We impose further constraints on δ deviations, as
the zero-order solution. Two types of the vibrational
motion should be considered now.

(i) Electrons oppositely situated vibrate
around the equilibrium positions in-phase, as shown
in Fig. 3b. The constrains on δ are

δ1 = δ3, δ2 = δ4, δ1 = −δ2. (28)

This reduces the matrix (27) to the scalar

Bδ
(3) = λδ = a− 6b +

1
8

=
1
4
−
√

2−Q, (29)

with the angular frequency

ω
(0)
δ =

η
(0)
δ

(2L + 1)3
, (30)

η
(0)
δ = 512

√
Q +

√
2− 1

4

(
Q− 1

4
− 1√

2

)3/2

. (31)

(ii) Oppositely situated electrons run out-of-
phase, Fig. 3a. The constraints read now

δ1 = −δ3, δ2 = −δ4, (32)

that yields for the diagonal elements

λ
(−)
δ = −(Q +

√
2

4
). (33)

The corresponding frequency is given by

ω
(−)
δ =

√
−λ

(−)
δ

r
3/2
L

, (34)

which provides finally

ω
(−)
δ =

η
(−)
δ

(2L + 1)3
, (35)

η
(−)
δ = 512

√
Q +

√
2

4

(
Q− 1

4
− 1√

2

)3/2

. (36)

Similarly, for the ∆ subspace we shall adopt a
shortcut for a rough estimate of the system instabil-
ity:

B∆
(4) =





c −3b − 1
4 −3b

−3b c −3b − 1
4

− 1
4 −3b c −3b

−3b − 1
4 −3b c





. (37)

Based on relation (20), we have from (37)

B∆
(3) =





c + 3b 0 3b− 1
4

1
4 − 3b c + 1

4
1
4 − 3b

3b− 1
4 0 c + 3b



 . (38)

Two types of antivibrational motion should be
considered here.

(i) Pairwise out-of-phase (asynchronous) mo-
tion, as shown in Fig. 4a, with the constraints

∆1 = −∆3, ∆2 = −∆4, ∆2 = −∆1. (39)

(ii) Pairwise in-phase (synchronous)
(anti)vibration, Fig. 4b,

∆1 = ∆3, ∆2 = ∆4, ∆2 = −∆1. (40)
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With the help of Eqs. (20) and (40) the matrix
(38) is reduced to the single element

λ(∆)
syn ≡ λ

(+)
∆ = c− 1

4
+ 6b = 2Q +

1
2
(
√

2− 1). (41)

Similarly, we obtain for the asynchronous mode

λ(∆)
asyn ≡ λ

(−)
∆ = 2Q−

√
2

4
. (42)

Hence, the short-term behaviour equations of motion
are

∆(+) = α1e
ω

(+)
∆ t + α2e

−ω
(+)
∆ t, (43)

∆(−) = β1e
ω

(−)
∆ t + β2e

−ω
(−)
∆ t, (44)

where α, β are arbitrary constants and

ω
(+,−)
∆ =

√
λ

(+,−)
∆

r
3/2
L

. (45)

Lyapunov exponent λr is given by the maxi-
mum value

λr = max[ω(+,−)
∆ ], (46)

where the instability exponents are given explicitly
by

ω
(+)
∆ =

η
(+)
∆

(2L + 1)3
, (47)

η
(+)
∆ = 512

√
2Q +

1
2
(
√

2− 1)
(

Q− 1
4
− 1√

2

)3/2

,

(48)
and

ω
(−)
∆ =

η
(−)
∆

(2L + 1)3
, (49)

η
(−)
∆ = 512

√
2Q−

√
2

4

(
Q− 1

4
− 1√

2

)3/2

. (50)

The instability (Lyapunov) exponent ω
(+)
∆ , as

given by (47), governs the lifetime of the excited
state. It corresponds to the case when two neigh-
bouring electrons start falling to the centre, while
the other two are escaping at their expense. In the
synchronous case two opposing electrons recede from
the nucleus, at the expense of the other two falling
inwards, as illustrated in Fig. 4. Note, however,
that neither of the equations used here governs the
long-term system behaviour, since we are all the time
within the first order perturbation (small deviations)
theory.

Fig. 4. Antivibrational modes along the radial mo-
tion.

3.3. Out-of-plane deviations

As in the previous case, through-the-plane os-
cillations possess two different modes, shown in Fig.
5. In order to evaluate the corresponding frequencies
we start from (15).

Fig. 5. Two vibration modes for the out-of-plane
oscillations. In-phase and out-of-phase oscillations
are denoted by the crosses and dots, respectively.

Substituting (15) into (10) one obtains for ∇1

r3 d2∇1

dt2
=

(
1
8
+

1√
2
−Q

)
∇1− 1√

8
∇2−1

8
∇3− 1√

8
∇4.

(51)
Similarly for the other three electrons (see Ap-

pendix) and after accounting for the constraints (17)
we arrive at the equation

r3 d2

dt2

{∇1

∇2

}
= N∇

{∇1

∇2

}
, (52)
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where the matrix in the restricted space is

N∇ =

{
1√
2
−Q − 1√

2

− 1√
2

1√
2
−Q

}
. (53)

Solving the corresponding secular equation (see Ap-
pendix), one has for the eigenvalues

λ
(+,−)
∇ =

1√
2
−Q± 1√

2
. (54)

The first root corresponds to the pairwise
∇1 = ∇3 = −∇2 = −∇4 and the second to the
all four electrons ∇1 = ∇3 = ∇2 = ∇4 in-phase os-
cillations respectively, as shown in Figs. 5a and 5b.

From the relation analogous to (34)

ω
(+,−)
∇ =

√
−λ

(+,−)
∇

r
3/2
L

, (55)

and (54) we have

ω
(+,−)
∇ =

η
(+,−)
∇

(2L + 1)3
, (56)

η
(+,−)
∇ = 512

√
Q− 1√

2
± 1√

2

(
Q− 1

4
− 1√

2

)3/2

.

(57)

3.4. Vibronic spectra

Vibronic modes are excited for sufficiently
large ρL. To locate thresholds for vibronic modes
appearance, we make use of the classical oscillator
energy in order to estimate the amplitude of the har-
monic oscillations (see Grujić 1999). If the energy of
the oscillator is evaluated both classically and quan-
tum mechanically, namely

Eclass =
1
2
ω2a2, (58)

Equant =
(

m +
1
2

)
ω, m = 0, 1, 2, ..., (59)

one has, for a << ρL (see (15)),

2L + 1 ÀÀ 6

√
−Qeff

λ
(2m + 1), m = 0, 1, 2, ...,

(60)

where ÀÀ implies, somewhat arbitrarily, the factor
25. Here we include zero-field (purely quantum me-
chanical) energy (m=0). Substituting (34) into (59)
we have for the i-th vibrational mode

E
(i)
vib =

(
mi +

1
2

)√−λi

r
3/2
L

, mi = 0, 1, 2, ... (61)

In order to compare the magnitude of rotational and
vibrational energies, we evaluate the ratio

E
(i)
vib

|E(0)
L |

= κ
2m + 1
2L + 1

, (62)

where

κ =
32
27

√
−λ

Qeff
. (63)

Hence, accounting for the limitation of m range by
(60), relative contributions from the vibrational de-
grees of freedom remain finite as the orbital mode
excitations increase.

Since the energy gaps between adjacent rota-
tional levels decrease with L, it is of interest to see
how this energy difference compares with the vibra-
tional mode energies. From (13) we have

∆EL+1,L ≡ EL+1 − EL

= 576 Q2
eff

L + 1
[(2L + 1)(2L + 3)]2

(64)

∼ 36 Q2
eff

L3
.

On the other hand we have from (61)

E
(i)
vib ∼ γ

mi + 1
2

L3
, mi < m

(max)
i , γ =

64Qeff

3
,

(65)
where m

(max)
i is the maximum mi allowed by (60).

Comparing (61) and (65), we see that a mere in-
crease of rotational excitation degree does not lead
to an overlap of energy levels with different L-s.

4. NUMERICAL RESULTS -
BERYLLIUM (P1 MODEL)

We calculate rovibronic spectra for the neutral
atomic system. Since within our first-order approx-
imation in-plane and out-of-plane motion decouple,
we treat both kinemetics separately.

Matrix B(8) from (23) for Q = 4 reads
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B(8) =





−4.2285 0.53034 0.25 0.53034 0 0.17678 0 0.17678
0.53034 −4.2285 0.53034 0.250 0.17678 0 0.17678 0

0.25 0.53034 −4.2285 0.53034 0 −0.17678 0 0.17678
0.53034 0.25 0.53034 −4.2285 0.17678 0 −0.17678 0

0 0.17678 0 −0.17678 7.39645 −0.53034 −0.25 −0.53034
−0.17638 0 0.17678 0 −0.53034 7.39645 −0.53034 −0.25

0 −0.17678 0 0.17678 −0.25 0.53034 7.3964 −0.53034
0.17678 0 −0.17678 0 −0.53034 −0.25 −0.53034 7.3964





.

(66)

We notice that the diagonal elements in (66)
appear much larger than the off-diagonal ones. In
particular, elements coupling δ and ∆ subspaces are
small. As a consequence of the mutual couplings,
all deviations share both stable (oscillatory) and un-
stable (exponentially decaying) modes. It is the U
matrix elements that determine the share of these
modes for each small deviation, as can be seen from
Eq. (21).

From (30) we have

ω
(0)
δ =

6175.92
(2L + 1)3/2

, (67)

and from (35)

ω
(−)
δ =

5669.94
(2L + 1)3/2

, (68)

with both frequencies close to each other,
ω

(−)
δ /ω

(0)
δ = 0.91807. Similarly, from (56)

ω
(+)
∇ =

3231.13
(2L + 1)3/2

, (69)

ω
(−)
∇ =

2597.82
(2L + 1)3/2

, (70)

with ratio ω
(−)
∇ /ω

(+)
∇ = 0.8040. From (47) and (49)

we have

ω
(+)
∆ =

4628.27
(2L + 1)3/2

, (71)

ω
(−)
∆ =

3555.58
(2L + 1)3/2

, (72)

that gives ω
(−)
∆ /ω

(+)
∆ = 0.7682.

Fig. 6. Vibrational frequencies ωδ, ω∇ and anti-
-vibrational frequency λ∆(Lyapunov exponent) vs.
nuclear charge.

We plot ω values versus the nuclear charge in
Fig. 6. Note the closeness of ω

(0)
δ (denoted by ωδ in

Fig. 6) and ω
(−)
δ . The increase of the related frequen-

cies with Q indicates the growing ”stiffness” of the
system as the strength of the nuclear field rises. On
the other hand, the frequency ratio is L-independent.
From (60) one has the condition for the onset of the
corresponding harmonic vibrations

2L
(min)
1,2 + 1 ÀÀ 6

√
−Qeff

λ1,2
(2m1,2 + 1). (73)

Minimum Lmax values for exciting vibrational modes
are given in Table 1, together with the corresponding
stability indices ν

ν = ωT = 2π

√
λ

Qeff
= 2π

T

τω
, (74)

where τω is the vibrational period and T is the sys-
tem rotational period. Numerical results indicate
that the system is highly unstable, what appears to
be a common feature of the regular structures based
on the correlation effects.
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Table 1. Some parameters for the quadruply ex-
cited system. Lmin is the minimum L for excitation
of a particular vibrational mode; ν is the stability
index for the particular mode (see text).

Lmin

m = 0 m = 1 m = 2 ν

δ(−) 40 120 200 7.5155
δ(0) 58 173 287 8.186
∇(+) 66 197 327 7.203
∇(−) 82 244 407 5.792

In view of the rather vague nature of (73) re-
quirement, the estimate of a threshold for the on-
set of the corresponding vibrational motion appears
somewhat arbitrary.1

We show in Table 2 a number of relevant
quantities for the quadruply excited beryllium atom,
where req is the radius of the equilibrium system or-
bit, λr is the Lyapunov exponent and τ is the level
lifetime

τ =
ln 2
λr

. (75)

Table 2. Semiclassical system parameters for the
quadruply excited four-electron system with Q = 4.
All quantities are in atomic units. In parentheses
the power of 10 is given by which the number is to
be multiplied. Lmax is the maximum system angular
momentum quantum number, req the single electron
equilibrium distance, λr is Lyapunov exponent, τ is
the lifetime, T is the rotational period, (see text).

Lmax req λr τ T

10 2.2645 9.423(-1) 7.356(-1) 1.2274(1)
25 13.356 6.579(-2) 1.054(1) 1.758(2)
40 3.369(1) 1.642(-2) 4.221(1) 7.043(2)
58 7.029(1) 5.449(-3) 1.272(2) 2.123(3)
66 9.083(1) 3.709(-3) 1.869(2) 3.118(3)
82 1.398(2) 1.942(-3) 3.569(2) 5.954(3)
120 2.982(2) 6.234(-4) 1.112(3) 1.855(4)
173 6.183(2) 2.088(-4) 3.32(3) 5.538(4)
197 8.012(2) 1.416(-4) 4.895(3) 8.169(4)
200 8.257(2) 1.353(-4) 5.123(3) 8.546(4)

Numerical results for the rovibronic spectrum
are given in Table 3.

The spectrum appears much more complex
than that of the triple excited system, like the
one from (Grujić 1999). Each of the two indepen-
dent degrees of freedom (in- and out-of-plane mo-
tions) has two different modes of vibrational kine-
matics. Within a particular degree of freedom differ-
ent modes alternate, i.e. they can not coexist. On
the contrary, a particular mode from an out-of-plane
motion couples with a mode from an in-plane degree
of freedom.

Strictly speaking, the zero energies (m = 0)
do not belong to the semiclassical theory, but are
included more for the sake of completeness and com-
parison, as it was done in the previous calculations
(Grujić 1999). As can be seen from Table 3, vibra-
tional excitations raise the energy levels by notice-
able amounts. This is more evident in Fig. 7, where
rovibrational energy levels are plotted in the form of
a histogram. The first column is in fact absent from
the model, but is presented for the sake of compar-
ison. As the degree of excitation of the basic lev-
els raises, higher vibrational levels appear and the
vibrational modes become more prominent. Hence,
the model moves the energy diagram further away
from the rotor-like ansatz, where vibrational modes
dominate and rotational degree contributions appear
as small superpositions to the basic vibrational ener-
gies, as is the case with molecules. It shows a poste-
riori that the rigid-rotator picture is inadequate for
describing rovibrational structure of the Coulombic
systems, as argued above.

-0.0043

-0.0042

-0.0041

-0.004
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-0.0038

-0.0037

-0.0036
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(0,-,-,0)
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Fig. 7. Rovibrational energies for L = 197, 200.
Vibrational quantum numbers m

(−)
δ ,m(0)

δ , m
(+)
∇ ,

m
(−)
∇ are denoted (see Table 3).

1Another choice would be to take straightway diagonal elements of (53), before further manipulating the vibrational matrix,

what would correspond to the zero-order approximation; thus, for m = 1 one would obtain L
(min)
1 ≈ 200, and similarly

L
(0)
2 ≈ 350 for m = 2.
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Table 3. Rovibronic spectrum for Be. All quantities are in atomic units. Lmax is the system maximum
angular momentum quantum number, E0 is the zero-order system energy, ω and m are the vibrational
angular frequencies and quantum numbers, respectively, and Etot is the system total energy. In parentheses
the power of 10 is given by which the number is to be multiplied.

Lmax −E0 ω
(0)
δ

ω
(−)
δ

ω
(+)
∇ ω

(−)
∇ m

(0)
δ

m
(−)
δ

m
(+)
∇ m

(−)
∇ −Etot

10 1.5117(0) - - - - - - - - 1.5117(0)
25 2.563(-1) - - - - - - - - 2.563(-1)

39 1.068(-1) - - - - - - - - 1.068(-1)
40 1.016(-1) - 1.587(-2) - - - 0 - - 9.366(-2)

58 4.870(-2) - 5.266(-3) - - - 0 - - 4.607(-2)
58 4.870(-2) 3.856(-3) - - - 0 - - - 4.677(-2)

66 3.769(-2) - 3.584(-3) 2.310(-3) - - 0 0 - 3.463(-2)
66 3.769(-2) 2.625(-3) - 2.310(-3) - 0 - 0 - 3.434(-2)

82 2.449(-2) 1.375(-3) - 1.210(-3) - 0 - 0 - 2.295(-2)
82 2.449(-2) - 1.868(-3) 1.210(-3) - - 0 0 - 2.289(-2)
82 2.449(-2) 1.375(-3) - - 9.728(-4) 0 - - 0 2.331(-2)
82 2.449(-2) - 1.868(-3) - 9.728(-4) - 0 - 0 2.307(-2)

120 1.148(-2) 4.412(-4) - 3.883(-4) - 0 - 0 - 1.106(-2)
120 1.148(-2) 4.412(-4) - - 3.122(-4) 0 - - 0 1.110(-2)
120 1.148(-2) - 6.0257(-4) 3.883(-4) - - 0 0 - 1.098(-2)
120 1.148(-2) - 6.0257(-4) - 3.122(-4) - 0 - 0 1.101(-2)
120 1.148(-2) - 6.0257(-4) - 3.122(-4) - 1 - 0 1.042(-2)
120 1.148(-2) - 6.0257(-4) 3.883(-4) - - 1 0 - 1.038(-2)

173 5.537(-3) - 2.0189(-4) 1.301(-4) - - 0 0 - 5.371(-3)
173 5.537(-3) 1.478(-4) - 1.301(-4) - 0 - 0 - 5.398(-3)
173 5.537(-3) 1.478(-4) - - 1.046(-4) 0 - - 0 5.411(-3)
173 5.537(-3) - 2.0189(-4) - 1.046(-4) - 0 - 0 5.384(-3)
173 5.537(-3) - 2.0189(-4) 1.301(-4) - - 1 0 - 5.156(-3)
173 5.537(-3) - 2.0189(-4) - 1.046(-4) - 1 - 0 5.171(-3)
173 5.537(-3) 1.478(-4) - 1.301(-4) - 1 - 0 - 5.250(-3)
173 5.537(-3) 1.478(-4) - - 1.046(-4) 1 - - 0 5.263(-3)

197 4.273(-3) - 1.3685(-4) 8.819(-5) - - 0 0 - 4.160(-3)
197 4.273(-3) 1.002(-4) - 8.819(-5) - 0 - 0 - 3.669(-3)
197 4.273(-3) 1.002(-4) - - 7.091(-5) 0 - - 0 4.187(-3)
197 4.273(-3) - 1.3685(-4) - 7.091(-5) - 0 - 0 4.169(-3)
197 4.273(-3) - 1.3685(-4) 8.819(-5) - - 1 0 - 4.024(-3)
197 4.273(-3) - 1.3685(-4) - 7.091(-5) - 1 - 0 4.032(-3)
197 4.273(-3) 1.002(-4) - 8.819(-5) - 1 - 0 - 4.079(-3)
197 4.273(-3) 1.002(-4) - - 7.091(-5) 1 - - 0 4.085(-3)

200 4.145(-3) - 1.3083(-4) 8.429(-5) - - 0 0 - 4.037(-3)
200 4.145(-3) - 1.3083(-4) - 6.777(-5) - 0 - 0 4.046(-3)
200 4.145(-3) 9.578(-5) - 8.429(-5) - 0 - 0 - 3.965(-3)
200 4.145(-3) 9.578(-5) - - 6.777(-5) 0 - - 0 4.063(-3)
200 4.145(-3) - 1.3083(-4) 8.429(-5) - - 1 0 - 3.907(-3)
200 4.145(-3) - 1.3083(-4) - 6.777(-5) - 1 - 0 3.915(-3)
200 4.145(-3) 9.578(-5) - 8.429(-5) - 1 - 0 - 3.959(-3)
200 4.145(-3) 9.578(-5) - - 6.777(-5) 1 - - 0 3.967(-3)
200 4.145(-3) 9.578(-5) - 8.429(-5) - 0 - 1 - 3.971(-3)
200 4.145(-3) - 1.3083(-4) 8.429(-5) - - 0 1 - 3.964(-3)
200 4.145(-3) - 1.3083(-4) - 6.777(-5) - 2 - 0 3.841(-3)
200 4.145(-3) - 1.3083(-4) 8.429(-5) - - 2 0 - 3.832(-3)
200 4.145(-3) - 1.3083(-4) 8.429(-5) - - 2 1 - 3.748(-3)
200 4.145(-3) - 1.3083(-4) - 6.777(-5) - 2 - 1 3.773(-3)
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5. DISCUSSION AND CONCLUSIONS

The extension from the triply to quadruply ex-
cited states turns out nontrivial. First, the number
of possible underlying classical configurations raises
considerably. We have restricted ourselves in this
paper to one of the most simple planar models, but
even in this case the spectrum appears very complex.
Even when neglecting coupling between vibrational
modes and rotational motion, as well as those be-
tween different vibrational modes themselves, calcu-
lations become cumbersome.

At present, the principal results and the re-
spective conclusions appear more of a heuristic than
practical value, displaying the complexity of the
physical behaviour of the few-electron systems. Even
if feasible from the experimental point of view, such
highly multiply excited systems would hardly pro-
vide distinctive line spectra. Rather, they would be
better interpreted in terms of statistical approach,
than by regular semiclassical behaviour.

Four equivalent electrons obviously violate
Pauli’s principle, but in real highly excited states two
pairs of equivalent electrons are practically indistin-
guishable from the four intrashell particles. One may
consider the system as composed of two equivalent
electrons with opposite spins and with L = Lmax/2,
and another pair with L = (Lmax−1)/2, both practi-
cally with circular, mutually indistinguishable orbits.

If the present results are to be compared with
the relevant quantum mechanical ones, that in the
absence of experimental data appears to be the only
criterion for judging of the procedure employed, one
must bear in mind that the two approaches are com-
plementary. First, full quantum mechanical calcula-
tions are still feasible for the low-lying states only,
where the semiclassical approach is not expected to
work. Second, the restricted model calculations, like
those within the frozen-r approximation, are still of
qualitative nature, aiming mainly at classifying pos-
sible quantum states. In this respect, semiclassical
modeling can be helpful in choosing underlying con-
figurations that may be used for the quantum me-
chanical calculations. How much effective this ap-
proach can be is well illustrated by the theory of
near-threshold fragmentation, which has been based
on the purely classical model by Wannier.

Generally, highly excited states belong to the
domain of correspondence principle and can serve as
tools for elucidating many quantum mechanical fea-
tures of the atomic systems via a more transparent
semiclassical models. Calculations presented in this
paper should hopefully contribute to this end. In this
respect further studies of relevant classical configura-
tions, like that of tetrahedron type as sketched at the
beginning of the present paper, would be desirable.
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APPENDIX

We rewrite (51) as

D2∇1 = f1(∇), (76)

where ∇ denotes the set (∇1,∇2,∇3,∇4). From the
cycling symmetry of the system, one has

D2∇2 = f1(∇1 → ∇2,∇2 → ∇3,

∇3 → ∇4,∇4 → ∇1) ≡ f2, (77)
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D2∇3 = f2(∇2 → ∇3,∇3 → ∇4,

∇4 → ∇1,∇1 → ∇2) ≡ f3, (78)

D2∇4 = f3(∇3 → ∇4,∇4 → ∇1,

∇1 → ∇2,∇2 → ∇3) ≡ f4. (79)

The system (76)-(79) can be rewritten in the
matrix form as

D2H = FH, (80)
where H is the corresponding column vector and

F =





a′ b′ −b′2 b′

b′ a′ b′ −b′2

−b′2 b′ a′ b′

b′ −b′2 b′ a′





, (81)

where a′ = 1
8 (1 + 4

√
2)−Q and, b′ = − 1√

8
.

Imposing the condition Lx = 0, Ly = 0, one
has respectively

∇2 = ∇4, ∇1 = ∇3, (82)

what gives (52) and (53) in the text. Requiring

det[Nr − Iλ] = 0, (83)

one obtains the eigenvalues (54).

SEMIKLASIQNA IZRAQUNAVAǋA QETVOROSTRUKO
POBU�ENIH QETVOROELEKTRONSKIH SISTEMA
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UDK 52-472
Originalni nauqni rad

Visoko pobu�eni atomi poprimaju vrlo
velike dimenzije i mogu se na�i samo u
veoma razre�enom gasnom staǌu, poput onog
u me�uzvezdanom prostoru. Vixestruko pobu-
�eni sistemi poput berilijuma, eksciti-
rani do velikih glavnih kvantnih brojeva,
imaju radijus r∼ 10 µ. Izuqavan je semi-
klasiqni spektar qetvorostruko visokopobu-
�enih qetvoroelektronskih atomskih sistema
za sluqaj ravanskog modela ekvivalentnih
elektrona. Energija sistema sastoji se od
rotacionih i vibracionih moda u okviru

pribli�no kru�ne elektronske orbite, kao
xto je ra�eno u prethodnim izraqunavaǌima
za trostruko pobu�ene troelektronske sis-
teme. Ovde prezentiramo numeriqke rezul-
tate za atom berilijuma. Polu�ivoti semi-
klasiqnih staǌa proceǌeni su pomo�u odgo-
varaju�ih ǈapunovǉevih eksponenata. Re-
lativni doprinosi vibracionih moda ener-
gijskim nivoima rastu sa stepenom kulon-
skih pobu�ivaǌa. Znaqaj dobijenih rezultata
diskutovan je kako sa opservacione, tako i eu-
ristiqke taqke gledixta.
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