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SUMMARY: Two-component systems are conceived as macrogases, and the re-
lated equation of state is expressed using the virial theorem for subsystems, under
the restriction of homeoidally striated density profiles. Explicit calculations are
performed for a useful reference case and a few cases of astrophysical interest, both
with and without truncation radius. Shallower density profiles are found to yield an

equation of state, φ = φ(y, m), characterized (for assigned values of the fractional

mass, m = Mj/Mi) by the occurrence of two extremum points, a minimum and a
maximum, as found in an earlier attempt. Steeper density profiles produce a similar
equation of state, which implies that a special value of m is related to a critical curve
where the above mentioned extremum points reduce to a single horizontal inflexion
point, and curves below the critical one show no extremum points. The similarity
of the isofractional mass curves to van der Waals’ isothermal curves, suggests the

possibility of a phase transition in a bell-shaped region of the (Oyφ) plane, where

the fractional truncation radius along a selected direction is y = Rj/Ri, and the

fractional virial potential energy is φ = (Eji)vir/(Eij)vir. Further investigation is
devoted to mass distributions described by Hernquist (1990) density profiles, for
which an additional relation can be used to represent a sample of N = 16 ellipti-

cal galaxies (EGs) on the (Oyφ) plane. Even if the evolution of elliptical galaxies
and their hosting dark matter (DM) haloes, in the light of the model, has been
characterized by equal fractional mass, m, and equal scaled truncation radius, or

concentration, Ξu = Ru/r†u, u = i, j, still it cannot be considered as strictly homol-
ogous, due to different values of fractional truncation radii, y, or fractional scaling

radii, y† = r†j/r†i , deduced from sample objects.

Key words. Galaxies: evolution – dark matter – Galaxies: halos

1. INTRODUCTION

Ordinary fluids (e.g., gases and liquids) may
be bounded by rigid walls which allow particle num-
ber conservation, avoiding evaporation. Macroscopi-
cal parameters (pressure, density, and temperature)
remain uniform within the box, due to its reduced

dimensions. On the other hand, astrophysical flu-
ids (e.g., stars and galaxies) may be conceived as
bounded by ”gravitational” walls which violate par-
ticle number conservation by allowing evaporation.
The macroscopical parameters exhibit gradients be-
cause they cannot remain uniform within the ”grav-
itational” box, due to its large-scale dimensions.
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In particular, sufficiently extended celestial
objects show at least two distinct components: core-
envelope for stars, core-halo for elliptical galax-
ies, bulge-disk for spiral and lenticular galaxies,
baryonic-nonbaryonic for virialized (matter) density
perturbations, and matter-dark energy for virialized
(matter + dark energy) density perturbations. On
this basis, an investigation on two-component astro-
physical fluids appears useful for the comprehension
and the interpretation of what is inferred from ob-
servations. To this aim, the choice of the density
profiles is of basic importance. The laws of ideal and
real gases were deduced from ordinary fluids, charac-
terized by uniform density profiles. Accordingly, it is
expected that astrophysical fluid laws are related to
the specified density profiles, and different laws hold
for different matter distributions.

Strictly speaking, a density profile should be
deduced from the distribution function, or vice versa.
Unfortunately, the determination of the distribu-
tion function is much more difficult than in one-
component systems, and only a few cases have been
studied in detail at present (e.g. Ciotti 1996, 1999).
On the other hand, global properties exhibited by
simple density profiles (with somewhere negative dis-
tribution function) are expected to maintain a simi-
lar trend in dealing with much more complex density
profiles (with nonnegative distribution function).

As the current attempt is mainly aimed to
explore global properties instead of local proper-
ties, density profiles shall be selected according to
their intrinsic simplicity, regardless from the physi-
cal meaning of the distribution function. Configu-
rations described by simple density profiles could be
sufficiently close to their counterparts described by
self-consistent density profiles, and the related re-
sults hold as a first approximation. In any case,
the self-consistency of density profiles with respect
to nonnegativity of the distribution function, can be
checked using a specific theorem (Ciotti and Pelle-
grini 1992).

To this approximation, the particle number
shall be assumed conserved, which is equivalent to
conceiving the boundary of each subsystem as a per-
fectly reflecting surface in order to avoid evapora-
tion. In this view, a possible choice of macroscopical
parameters is: the fractional virial potential energy
φ; the fractional truncation radius y; and the frac-
tional mass m; as was done in a pioneering paper
dealing with uniform density profiles i.e. homoge-
neous configurations (Caimmi and Secco 1990, here-
after quoted as CS90). Accordingly, each subsys-
tem is assumed virialized, in the sense that the virial
equations are satisfied by averaging over a sufficiently
long time, and particles move within a bounded re-
gion (e.g. Landau and Lifchitz 1966, Chap. II, §10;
Caimmi 2007a). Then virial equilibrium is a nec-
essary (but not sufficient) condition for dynamic or
hydrostatic equilibrium, which, on the other hand,
does not imply pressureless configurations, as the
stress tensor is related to the kinetic-energy tensor
(e.g. Binney and Tremaine 1987, Chap. 4, §2).

For sake of simplicity, the applications of the
general theory shall be restricted to homeoidally stri-

ated density profiles (e.g. Roberts 1962, Caimmi
1993, Caimmi and Marmo 2003, hereafter quoted
as CM03). The larger effects of asphericity are
expected to occurr in homogeneous configurations,
which have widely been investigated (Brosche et al.
1983, Caimmi et al. 1984, CS90, Caimmi and Secco
1992). Focaloidally striated density profiles involve
far larger difficulty (e.g. Caimmi 1995, 2003).

The current investigation is mainly devoted to
the following points: (i) expression of an equation of
state for two-component systems; (ii) description of
global properties deduced from selected density pro-
files; and (iii) application to elliptical galaxies be-
longing to a restricted sample, to be represented on
the (Oyφ) plane, for fiduciary values of model pa-
rameters.

The work is organized as follows. The basic
theory of two-component systems with homeoidally
striated density profiles is reviewed and extended (to
include both cored and cuspy matter distributions)
in Section 2. The particularization to selected den-
sity profiles, involving explicit expressions, is given
in Section 3. The results and related global proper-
ties are described and discussed in Section 4. Ellip-
tical galaxies belonging to a restricted sample, are
represented on the (Oyφ) plane, for fiduciary values
of model parameters, in Section 5, where some con-
siderations are given. The concluding remarks are
reported in Section 6.

2. BASIC THEORY

A general theory of two-component matter
distributions has been exhaustively treated in an ear-
lier paper (Caimmi and Secco 1992), and the inter-
ested reader is addressed therein and in parent in-
vestigations (MacMillan 1930, Chap. III, §76, Limber
1959, Neutsch 1979, Brosche et al. 1983, Caimmi et
al. 1984) for further details. What is relevant for
the current attempt, shall be reviewed and extended.
If not otherwise stated, matter distributions should
be conceived as continuous media instead of discrete
particle sets (e.g. Limber 1959, Caimmi 2007a). In
the following, general definitions and related explicit
expressions will be provided. Readers mainly inter-
ested to a simple reference case and a few cases of
astrophysical interest, might directly go to Section 3,
while readers mainly interested to the results and an
application to elliptical galaxies, might directly go to
Sections 4 and 5, respectively.

2.1. Kinetic-energy and self
potential-energy tensors

Throughout the current paper, 3 × 3 tensors,
Tpq, shall be dealt with, (p = 1, 2, 3 and q = 1, 2, 3).
To gain space, this circumstance shall be omitted in
the forthcoming formulae.

For any selected density profile, the kinetic-
energy tensor and the kinetic energy read (Binney
and Tremaine 1987, Chap. 4, §4.3):
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(Ekin)pq =
1
2

∫

S

ρ(x1, x2, x3)vpvq d3S ; (1a)

Ekin =
1
2

∫

S

ρ(x1, x2, x3)
3∑

s=1

v2
s d3S ; (1b)

while the self potential-energy tensor and the self po-
tential energy read (Chandrasekhar 1969, Chap. 2,
§10):

(Esel)pq =
∫

S

ρ(x1, x2, x3)xp
∂V
∂xq

d3S

= −1
2

∫

S

ρ(x1, x2, x3)Vpq(x1, x2, x3) d3S ; (2a)

Esel =
∫

S

ρ(x1, x2, x3)
3∑

s=1

xs
∂V
∂xs

d3S

= −1
2

∫

S

ρ(x1, x2, x3)V(x1, x2, x3) d3S ; (2b)

where ρ is the density, d3S = dx1 dx2 dx3 is an in-
finitesimal volume element placed at P = (x1, x2, x3),
vpvq = vpvq and v2

s = (v2
s) are arithmetic means cal-

culated within d3S, Vpq and V are the gravitational
tensor potential and potential, respectively (Chan-
drasekhar 1969, Chap. 2, §10):

Vpq(x1, x2, x3) = G

∫

S

ρ(x′1, x
′
2, x

′
3)

× (x′p − xp)(x′q − xq)∣∣∣−→R −−→R′
∣∣∣
3 d3S′ ; (3a)

V(x1, x2, x3) = G

∫

S

ρ(x′1, x
′
2, x

′
3)

d3S′∣∣∣−→R −−→R′
∣∣∣

; (3b)

where G is the gravitation constant, −→R = −→
OP and−→

R′ =
−−→
OP′, P′ = (x′1, x

′
2, x

′
3), radius vectors with ori-

gin at the centre of inertia.
In accordance with Eq. (3), the normalization

of the potential satisfies the boundary condition to be
null at infinite distances, and then positive elsewhere
(e.g. MacMillan 1930, Chap. II, §20, Chandrasekhar
1969, Chap. 3, §17, Caimmi and Secco 2003), rather
than null at the centre of inertia, and negative else-
where (e.g. Binney and Tremaine 1987, Chap. 2, §1,
Mouri and Taniguchi 2003).

Let i and j denote the subsystems of a
two-component matter distribution. The potential-
energy tensor and the potential energy may be cast
into the form (Caimmi and Secco 1992):

(Epot)pq = [(Ei)sel]pq + [(Eij)int]pq + [(Eji)int]pq

+ [(Ej)sel]pq ; (4a)
Epot = (Ei)sel + (Eij)int + (Eji)int + (Ej)sel ; (4b)

where the expression for the potential energy (e.g.
MacMillan 1930, Chap. III, §76) has been general-
ized to the potential-energy tensor; in addition, the
interaction potential-energy tensor, [(Euv)int]pq, and
the interaction potential energy, (Euv)int, read:

[(Euv)int]pq = −1
2

∫

Su

ρu(x1, x2, x3)[Vv(x1, x2, x3)]pq

× d3S ; u = i, j ; v = j, i ; (5a)

(Euv)int = −1
2

∫

Su

ρu(x1, x2, x3)Vv(x1, x2, x3) d3S ;

u = i, j ; v = j, i ; (5b)

which are symmetric with respect to the exchange of
one component with the other:

[(Eij)int]pq = [(Eji)int)]pq ; (6a)
(Eij)int = (Eji)int ; (6b)

for further details refer to earlier attempts (MacMil-
lan 1930, Chap. III, §76, Caimmi and Secco 1992).

To gain space, the relations, u = i, j, v = j, i,
which mean u, v are generic subsystems while i, j are
the inner and the outer one, respectively, shall be
omitted in the forthcoming formulae.

The tidal potential-energy tensor and the tidal
potential energy read (e.g. Caimmi and Secco
1992):

[(Euv)tid]pq =
∫

Su

ρu(x1, x2, x3)xp
∂Vv

∂xq
d3S ; (7a)

(Euv)tid =
∫

Su

ρu(x1, x2, x3)
3∑

s=1

xs
∂Vv

∂xs
d3S ; (7b)

where the tidal potential energy, (Euv)tid, may be
conceived as the virial of the u-th component in con-
nection with the tidal field induced by the v-th com-
ponent (Brosche et al. 1983).

The tensor and the scalar virial theorem for
a single subsystem, within the tidal field induced by
the other one, read (Caimmi et al. 1984, Caimmi
and Secco 1992):

2[(Eu)kin]pq + [(Eu)sel]pq + [(Euv)tid]pq = 0 ; (8a)
2(Eu)kin + (Eu)sel + (Euv)tid = 0 ; (8b)

which is the generalization of previous results related
to one-component systems (e.g. Chandrasekhar
1969, Chap. II, §11, Binney and Tremaine 1987,
Chap. 4, §3). The validity of the relations (Caimmi
and Secco 1992):

[(Eij)tid]pq + [(Eji)tid]pq = [(Eij)int]pq

+ [(Eji)int)]pq ; (9a)
(Eij)tid + (Eji)tid = (Eij)int + (Eji)int ; (9b)

implies the following:

[(Euv)tid]pq = [(Euv)int]pq + [(Euv)res]pq ; (10a)
(Euv)tid = (Euv)int + (Euv)res ; (10b)
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where [(Euv)res]pq and (Euv)res are the residual
potential-energy tensor and the residual potential en-
ergy, respectively, which are antisymmetric with re-
spect to the exchange of one component with the
other:

[(Eij)res]pq = −[(Eji)res]pq ; (11a)
(Eij)res = −(Eji)res ; (11b)

for further details refer to earlier attempts (Caimmi
and Secco 1992, Caimmi 2007b).

It can be seen from Eqs. (6), (10), and (11),
that the tidal potential-energy tensor, [(Euv)tid]pq,
and the tidal potential energy, (Euv)tid, are made of
a symmetric term, [(Euv)int]pq and (Euv)int, and an
antisymmetric one, [(Euv)res]pq and (Euv)res, respec-
tively, with respect to the exchange of one component
with the other.

The virial theorem in tensor and in scalar
form, expressed by Eqs. (8), may be written in more
compact form:

2[(Eu)kin]pq + [(Euv)vir]pq = 0 ; (12a)
2(Eu)kin + (Euv)vir = 0 ; (12b)

where the virial potential-energy tensor, [(Euv)vir]pq,
and the virial potential energy, (Euv)vir, are defined
as:

[(Euv)vir]pq = [(Eu)sel]pq + [(Euv)tid]pq ; (13a)
(Euv)vir = (Eu)sel + (Euv)tid ; (13b)

where, in general, the virial potential energy is usu-
ally named ”the virial of the system” (Clausius
1870). In the case under discussion, the ”system”
relates to the u-th component within the tidal po-
tential induced by the v-th component.

For the assigned density profiles, the virial
potential-energy tensor and the virial energy of each
subsystem can be determined, together with their
kinetic counterparts via Eqs. (12a) and (12b), re-
spectively, which constrain, in turn, the orbital
anisotropy on each subsystem. More specifically, the
sum of mean orbital kinetic-energy tensor and kinetic
energy, has to reproduce [(Eu)kin]pq and (Eu)kin, re-
spectively.

When a system is not entirely contained
within its truncation radius, the usual form of the
virial theorem, 2Ekin +Epot = 0, should be extended
as 2Ekin + Epot = 3pS, where the last is a surface
term (e.g. The and White 1986, Carlberg et al. 1996,
Girardi et al. 1998). In dealing with a specified
subsystem, it shall be understood that no mass ex-
ists outside the mentioned truncation radius, which
makes a null surface term.

To avoid the determination of the gravita-
tional potential, which is the most difficult step to-
wards an explicit expression of the potential-energy
tensors and potential energies, a particular procedure
shall be followed under the restrictive assumption of
homeoidally striated density profiles (Roberts 1962).

2.2. Homeoidally striated density
profiles

Let the isopycnic (i.e. constant density) sur-
faces be defined by the following law (CM03):

ρ = ρ†f(ξ) ; f(1) = 1 ; (14a)

ξ2 =
3∑

`=1

x2
`

(a†`)2
; 0 ≤ ξ ≤ Ξ ; (14b)

where ρ† = ρ(1) , a†`, are the density and the semi-
axes, respectively, of a reference isopycnic surface,
and Ξ corresponds to the truncation isopycnic sur-
face, related to semiaxes, a`. The scaled radial coor-
dinate, ξ, and the scaled density, f , may be conceived
as the generalization of their counterparts related to
polytropes (e.g. Chandrasekhar 1939, Chap. IV, §4,
Horedt 2004, Chap. 2, §2.1).

According to Eqs. (14), the scaling density, ρ†,
and the scaling radius, r†, correspond to a single
boundary, which allows the description of both cored
and cuspy density profiles. The assumption that the
system is homeoidally striated implies the relation
(CM03):

ξ =
r

r†
; (15)

and, in particular:

Ξ =
R

r†
; (16)

which, in any case, is independent of the radial coor-
dinate, r, of the generic point on the selected isopy-
cnic surface.

2.3. Mass and inertia tensor

The function (Roberts 1962):

F (ξ) = 2
∫ Ξ

ξ

f(ξ′)ξ′ dξ′ ; (17a)

F (Ξ) = 0 ;
dF

dξ
= −2ξf(ξ) ; (17b)

∫ Ξ

0

f(ξ)ξn dξ =
n− 1

2

∫ Ξ

0

F (ξ)ξn−2 dξ; n > 1;(17c)

allows the calculation of the total mass as (CM03):

M = νmasM
† ; (18a)

νmas =
3
2

∫ Ξ

0

F (ξ) dξ ; (18b)

M† =
4π

3
ρ†a†1a

†
2a
†
3 ; (18c)

and the inertia tensor as (CM03):

Ipq = δpqνinrM
†(a†p)

2 ; (19a)

νinr =
3
2

∫ Ξ

0

F (ξ)ξ2 dξ ; (19b)
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where the coefficients, νmas and νinr, are shape-
independent and may be conceived as profile factors
(Caimmi 1993), and δpq is the Kronecker symbol.
For a different formulation of the inertia tensor refer
to earlier attempts (e.g. Landau and Lifchitz 1966,
Chap. VI, §32, Bett et al. 2007).

The mass within an isopycnic surface, ρ =
ρ†f(ξ), is M(ξ) = νmas(ξ)M†, where νmas(ξ) is ex-
pressed by Eq. (18b) with ξ instead of Ξ. The related
mean density is ρ(ξ) = M(ξ)/S(ξ), where S(ξ) is the
volume bounded by the isopycnic surface.

2.4. Potential-energy tensors and
potential energies

The self potential-energy tensor and the self
potential energy read (CM03):

(Esel)pq = −δpqνsel
G(M†)2

a†1
Bp ; (20a)

Esel = −νsel
G(M†)2

a†1
B ; (20b)

νsel =
9
16

∫ Ξ

0

F 2(ξ) dξ ; (20c)

Bp = εp2εp3

∫ +∞

0

(1 + s′)−3/2(1 + ε2pqs
′)−1/2

× (1 + ε2prs
′)−1/2 ds′ ; (20d)

B =
3∑

s=1

Bp ; εmn =
am

an
; (20e)

where νsel is a profile factor, εmn are axis ratios, and
Bp are shape factors which, ipso facto, depend on
the axis ratios only (Caimmi 1992).

The above results are related to a single sub-
system: strictly speaking, all the quantities defined
in the current section should be labelled by the in-
dex, u, indicating connection with the u-th subsys-
tem (e.g. Caimmi and Secco 1992), but it has been
omitted to gain clarity. On the other hand, the for-
mulation of other potential-energy tensors and po-
tential energies necessarily involves (at least) two
components. The related calculations are very dif-
ficult in the general case, and for this reason only
the special situation of similar and similarly placed
boundaries shall be considered.

With this restriction, the combination of
Eqs. (15), (16), and (18c), related to both density
profiles, the inner one be denoted by i and the outer
by j, yields:

ξi = y†ξj ;
Ξj

Ξi
=

y

y†
;

(νj)mas

(νi)mas
=

m

m† ; (21a)

y =
Rj

Ri
; y† =

r†j
r†i

; m =
Mj

Mi
; m† =

M†
j

M†
i

; (21b)

which allows to express the other potential-energy

tensors and potential energies, as (CM03):

[(Euv)xxx]pq = −δpq
G(M†

u)2

(a†u)1
(νuv)xxxBp ; (22a)

(Euv)xxx = −G(M†
u)2

(a†u)1
(νuv)xxxB ; (22b)

u = i, j ; v = j, i ; xxx = int, tid, res, vir ; (22c)

and the explicit expression of the profile factors reads
(CM03):

(νij)int = − 9
16

m†
[
w(int)(η) + w(ext)(η)

]
; (23a)

(νij)tid = −9
8
m†w(ext)(η) ; (23b)

(νji)tid = −9
8

y†

m†w
(int)(η) ; (23c)

(νij)res = − 9
16

m†
[
w(int)(η)− w(ext)(η)

]
; (23d)

(νuv)vir = (νu)sel + (νuv)tid ; (23e)
(νij)int = (νji)int ; (νij)res = −(νji)res ; (23f)

η =
Ξi

y†
=

Ξj

y
; (23g)

where the functions w(int) and w(ext) are defined as
(CM03):

w(int)(η) =
∫ η

0

Fj(ξj)
dFi

dξj
ξj dξj ; (24a)

w(ext)(η) =
∫ η

0

Fi(ξi)
dFj

dξj
ξj dξj ; (24b)

in conclusion, Eqs. (20)-(24) allow to calculate the
potential-energy tensors and potential energies for
homeoidally striated density profiles in the presence
of similar and similarly placed boundaries.

In the case under discussion, due to Eqs. (22),
the fractional virial potential-energy tensor compo-
nent equals the fractional virial potential energy, as:

φ =
[(Eji)vir]pq

[(Eij)vir]pq
=

(Eji)vir

(Eij)vir
=

(m†)2

y†
(νji)vir

(νij)vir
; (25)

which, for the density profiles considered, depends
on the reference fractional mass, m†, and the frac-
tional scaling radius, y†, according to Eqs. (21)-(24).
The substitution of Eqs. (21) into (25) yields:

φ =
m2

y

Ξj

Ξi

[
(νi)mas

(νj)mas

]2 (νji)vir

(νij)vir
; (26)

which, for the density profiles considered, depends on
the fractional mass, m, and the fractional truncation
radius, y, according to Eqs. (21)-(24).

Strictly speaking, Eqs. (21)-(26) are valid pro-
vided the indices, i and j, denote the embedded and
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the embedding subsystem, respectively, which im-
plies y ≥ 1. This is why the above procedure is
valid only for the inner component, where the Pois-
son equation instead of the Laplace one holds with
respect to the gravitational potential. The remain-
ing results, related to the outer component, are ob-
tained by use of the symmetry of the interaction
potential-energy tensor and interaction potential en-
ergy, Eqs. (6), and the antisymmetry of the resid-
ual potential-energy tensor and residual potential en-
ergy, Eqs. (11).

If the role of the two subsystems is reversed,
0 ≤ y ≤ 1, it has to be kept in mind that, in this case,
the inner and the outer component are denoted by
the indices, j and i, respectively, and the reversion
must be carried out in Eqs. (21)-(26), through the
following steps: (i) make the changes: m → m−1;
m† → (m†)−1; y → y−1; y† → (y†)−1; Ξi ↔ Ξj ;
(νi)mas ↔ (νj)mas; (νi)sel ↔ (νj)sel; (ii) for assigned
y ≥ 1 and y† = (Ξi/Ξj)y, calculate the functions,
w(int)(η) and w(ext)(η); (iii) calculate the profile fac-
tors, (νij)tid and (νji)tid, as well as the remaining
ones whenever needed; (iv) calculate the fractional
virial potential energy, φ; (v) make the changes,
m → m−1; m† → (m†)−1; y → y−1; y† → (y†)−1;
φ → φ−1; which allow the extension of the fractional
virial potential energy, φ = (Eji)vir/(Eij)vir, to the
domain, 0 ≤ y ≤ 1.

In absence of truncation radius, Ξ → +∞,
η → +∞, the reversion occurs when the density
drops to zero and nothing changes except in infinites-
imal terms of higher order and infinite terms of lower
order. Accordingly, there is no need to perform the
reversion in this case.

The relation, φ = φ(y†,m†), or its counter-
part, φ = φ(y, m), expressed by Eqs. (25) and (26),
respectively, may be conceived as an equation of
state for the two-component systems with assigned
homeoidally striated density profiles. At the price
of major complexity, it can be formulated for any
kind of two-component, ideal, self-gravitating fluids,
hereafter quoted as ”two-component macrogases” or,
more shortly, as ”macrogases”.

3. SPECIAL CASES

The explicit expression for the macrogases
equation of state is, in general, rather cumbersome
and numerical computations should be preferred to
this aim. On the other hand, the procedure is
conceptually simple, as the functions w(int)(η) and
w(ext)(η), as well as the fractional virial potential
energy, φ, may be calculated using Eqs. (20)-(26).

Aiming to provide a description of the general
trend and related features, a limited number of sim-
ple possibilities shall be analysed in detail, selecting
density profiles from the family:

f(ξ) =
2χ

ξγ(1 + ξα)χ
; χ =

β − γ

α
; (27)

which is defined by three parameters, (α, β, γ). For
further details refer to earlier attempts (e.g. Hern-
quist 1990, Zhao 1996, Caimmi and Marmo 2004,
Caimmi et al. 2005, Caimmi 2006), where special
cases were fully investigated.

In the following, the macrogases equation of
state shall be determined for a simple but unrealis-
tic density profile, to be taken as a reference case,
and a few density profiles of astrophysical interest.
The reader whose attention is mainly directed to the
results and/or the astrophysical applications of the
model, is free to jump directly to Section 4 and/or
5, respectively.

3.1. UU macrogases

Here, the related density profiles are uniform,
(α, β, γ) = (0, 0, 0), and Eq. (27) reduces to:

fu(ξu) = 1 ; 0 ≤ ξu ≤ Ξu ; u = i, j ; (28)

which is equivalent to polytropes with index, n = 0
(e.g. Chandrasekhar 1939, Chap. IV, §4, Caimmi
1986) but implies unphysical situations for stellar
fluids (Vandervoort 1980). The particularization of
Eqs. (17a), (18b), (20c), (24a), and (24b) to the case
of interest here yields:

Fu(ξu) = Ξ2
u − ξ2

u ; (29)
(νu)mas = Ξ3

u ; (30)

(νu)sel =
3
10

Ξ5
u ; (31)

w(int)(η) = − 4
15

Ξ2
i η

3

(
5
2
y2 − 3

2

)
; (32)

w(ext)(η) = − 4
15

Ξ2
i η

3 ; (33)

and, using Eqs. (23b), (23c) and (23g), the UU
macrogases equation of state follows from the par-
ticularization of Eq. (26) to the case of interest, as:

φ =
(m†)2

y†

(
y

y†

)5 1 +
(y†)3

(m†)
1
y5

(
5
2
y2 − 3

2

)

1 +
m†

(y†)3

;

y ≥ 1 ; (34)

and the extension of the above function to the do-
main, 0 ≤ y ≤ 1, following the procedure outlined in
Subsection 2.4, yields:

φ =
(

y

y†

)5 m†(y†)2
[
1 +

m†

(y†)3

]

1 + m†
(

y

y†

)3 (
5
2
− 3

2
y2

) ;

0 ≤ y ≤ 1 ; (35)
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where it can be seen that in the special case, y = 1,
Eqs. (34) and (35) do coincide. If, in addition, Ξi =
Ξj , which implies y† = y, m† = m, via Eqs. (18) and
(21), then Eqs. (34) and (35) reduce to:

φ = m = m† ; y = y† = 1 ; (36)

or φ(1,m) = m.
Owing to Eqs. (34) and (35), the fractional

virial potential energy, φ, is independent of the frac-
tional truncation radii, (Ξi,Ξj).

3.2. PP macrogases

The related density profiles (Schuster 1883,
Plummer 1911) imply (α, β, γ) = (2, 5, 0), and
Eq. (27) reduces to:

fu(ξu) =
25/2

(1 + ξ2
u)5/2

; 0 ≤ ξu ≤ Ξu ; u = i, j ; (37)

which is equivalent to polytropes with index, n = 5;
for a formal demonstration, see Appendix 1. For one-
component systems, hydrostatic equilibrium holds
regardless from the nature of the fluid (Vandervoort
1980).

The particularization of Eqs. (17a), (18b),
(20c), (24a), and (24b) to the case of interest yields:

Fu(ξu) =
27/2

3

[
1

(1 + ξ2
u)3/2

− 1
(1 + Ξ2

u)3/2

]
; (38)

(νu)mas =
25/2Ξ3

u

(1 + Ξ2
u)3/2

; (39)

(νu)sel =
Ξu(3Ξ4

u − 8Ξ2
u + 13)

(1 + Ξ2
u)3

+ 3 arctan Ξu ; (40)

w(int)(η) = −128
3

(y†)2
{

[(y†)2 + 7]iE(y†, iα)
3[(y†)2 − 1]3

+

+
4[(y†)2 − 1]iF (y†, iα)

3[(y†)2 − 1]3
+

+
P (int)(η, y†)

3[(y†)2 − 1]3(η2 + 1)[(y†)2η2 + 1]2
−

− 1
(1 + Ξ2

j )3/2

η3

3[(y†)2η2 + 1]3/2

}
; (41a)

P (int)(η, y†) = η
√

η2 + 1
√

(y†)2η2 + 1×
× [(y†)6η2(η2 + 1) + (y†)4η2(7η2 − 4) +

+ (y†)2(11η2 + 5) + 3] ; (41b)

α = arcsinh η ; y† 6= 1 ; (41c)

w(int)(η) = −128
3

(y†)2
[
arctan η

16
+

+
η(3η4 + 8η2 − 3)

48(η2 + 1)3
−

− 1
(1 + Ξ2

j )3/2

η3

3(η2 + 1)3/2

]
;

y† = 1 ; (41d)

w(ext)(η) = −128
3

{
− [7(y†)2 + 1]iE(y†, iα)

3[(y†)2 − 1]3
+

+
[3(y†)4 − 2(y†)2 − 1]iF (y†, iα)

3[(y†)2 − 1]3
−

− P (ext)(η, y†)
3[(y†)2 − 1]3(η2 + 1)2[(y†)2η2 + 1]

−

− 1
(1 + Ξ2

i )3/2

η3

3(η2 + 1)3/2

}
; (42a)

P (ext)(η, y†) = η
√

η2 + 1
√

(y†)2η2 + 1×
× [(y†)4(7η4 + 11η2 + 3) +

+ (y†)2(η4 + 4η2 + 5) + η2] ; (42b)

α = arcsinh η ; y† 6= 1 ; (42c)

w(ext)(η) = −128
3

[
arctan η

16
+

η(3η4 + 8η2 − 3)
48(η2 + 1)3

−

− 1
(1 + Ξ2

i )3/2

η3

3(η2 + 1)3/2

]
;

y† = 1 ; (42d)

where i is the imaginary unit, F and E are incom-
plete elliptic integrals of first and second kind, re-
spectively, defined as:

F (k, β) =
∫ β

0

dθ√
1− k2 sin2 θ

=

=
∫ x

0

dt√
1− t2

√
1− k2t2

; (43a)

E(k, β) =
∫ β

0

√
1− k2 sin2 θ dθ =

=
∫ x

0

√
1− k2t2√
1− t2

dt ; (43b)

x = sin β ; t = sin θ ; (43c)

for further details refer to specialized textbooks (e.g.
Spiegel 1968, Chap. 4, §§34.1-4).
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Using Eqs. (23b), (23c) and (39)-(42), the PP
macrogases equation of state is obtained from the
particularization of Eq. (26) to the case of interest
for the domain, y ≥ 1. The extension to the domain,
0 ≤ y ≤ 1, can be carried out following the procedure
outlined in Subsection 2.4.

In the absence of truncation radius, the den-
sity drops to zero as the radius goes to infinity,
Ξ → +∞, η → +∞, and Eqs. (38)-(42) reduce to:

lim
Ξu→+∞

Fu(ξu) =
27/2

3
1

(1 + ξ2
u)3/2

; (44)

lim
Ξu→+∞

(νu)mas = 25/2 ; (45)

lim
Ξu→+∞

(νu)sel =
3π

2
; (46)

lim
η→+∞

w(int)(η) = −128
3

(y†)2
[(y†)2 + 7]E(k, π/2)

3[(y†)2 − 1]3
−

− [5(y†)2 + 3]F (k, π/2)
3[(y†)2 − 1]3

;

k =
√

1− (y†)2 ; y† 6= 1 ; (47a)

lim
η→+∞

w(int)(η) = −4π

3
; y† = 1 ; (47b)

lim
η→+∞

w(ext)(η) = −128
3

y†
[3(y†)2 + 5]F (k, π/2)

3[(y†)2 − 1]3
−

− [7(y†)2 + 1]E(k, π/2)
3[(y†)2 − 1]3

;

k =
√

1− 1/(y†)2 ; y† 6= 1 ; (48a)

lim
η→+∞

w(ext)(η) = −4π

3
; y† = 1 ; (48b)

where, in particular, the related expression of the
tidal energy coincides with its counterpart calculated
in an earlier attempt (Valentinuzzi 2006, Chap. 4,
§4.1). Using Eqs. (23b), (23c) and (45)-(48), the PP
macrogases equation of state in the special situation
under discussion is obtained from the particulariza-
tion of Eq. (26) to the case of interest, for the domain,
y ≥ 0.

If, in addition, y = y† = 1, Ξj = Ξi, the com-
bination of Eqs. (26) and (45)-(48) yields Eq. (36).

3.3. HH macrogases

The related density profiles (Hernquist 1990)
imply (α, β, γ) = (1, 4, 1), and Eq. (27) reduces to:

fu(ξu) =
8

ξu(1 + ξu)3
;

0 ≤ ξu ≤ Ξu ; u = i, j ; (49)

which has been proved to be consistent with nonneg-
ative distribution functions, in the parameter range
of interest (Ciotti 1996).

The particularization of Eqs. (17a), (18b),
(20c), (24a), and (24b) to the case of interest yields:

Fu(ξu) =
8

(1 + ξu)2
− 8

(1 + Ξu)2
; (50)

(νu)mas =
12Ξ2

u

(1 + Ξu)2
; (51)

(νu)sel =
12Ξ3

u(4 + Ξu)
(1 + Ξu)4

; (52)

w(int)(η) = −128y†
{

1
2

1
(y† − 1)4

[
− (y† − 1)2y†η

(y†η + 1)2
+

+
2(y† − 1)η

1 + η
+

(y† − 1)(y† + 3)y†η
y†η + 1

+

+2(2y† + 1) ln
η + 1

y†η + 1

]
−

−1
2

1
(1 + Ξj)2

1
(y†)2

[
1− 2y†η + 1

(y†η + 1)2

]}
;

y† 6= 1 ; (53a)

w(int)(η) = −128
{

1
12

[
− 4η + 1

(η + 1)4
+ 1

]
−

−1
2

1
(1 + Ξj)2

η2

(η + 1)2

}
;

y† = 1 ; (53b)

w(ext)(η) = −128
{
−1

2
1

(y† − 1)4

[
(y† − 1)2η
(η + 1)2

+

+
2(y†)2(y† − 1)η

1 + y†η
+

(y† − 1)(3y† + 1)η
η + 1

−

−2y†(y† + 2) ln
y†η + 1
η + 1

]
−

−1
2

1
(1 + Ξi)2

η2

(η + 1)2

}
;

y† 6= 1 ; (54a)

w(ext)(η) = 128
{

1
12

[
4η + 1

(η + 1)4
− 1

]
+

+
1
2

1
(1 + Ξi)2

η2

(η + 1)2

}
;

y† = 1 ; (54b)

using Eqs. (23b), (23c) and (51)-(54), the HH macro-
gases equation of state is obtained from the par-
ticularization of Eq. (26) to the case of interest for
the domain, y ≥ 1. The extension to the domain,
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0 ≤ y ≤ 1, can be carried out following the proce-
dure outlined in Subsection 2.4.

In the absence of truncation radius, the den-
sity drops to zero when the radius tends to infinity,
Ξ → +∞, η → +∞, and Eqs. (50)-(54) reduce to:

lim
Ξu→+∞

Fu(ξu) =
8

(1 + ξu)2
; (55)

lim
Ξu→+∞

(νu)mas = 12 ; (56)

lim
Ξu→+∞

(νu)sel = 12 ; (57)

lim
η→+∞

w(int)(η) = − 64y†

(y† − 1)4
[−2(2y† + 1) ln y†+

+(y† − 1)(y† + 5)
]

;

y† 6= 1 ; (58a)

lim
η→+∞

w(int)(η) = −32
3

; y† = 1 ; (58b)

lim
η→+∞

w(ext)(η) = − 64
(y† − 1)4

[
2y†(y† + 2) ln y†−

−(y† − 1)(5y† + 1)
]

;

y† 6= 1 ; (59a)

lim
η→+∞

w(ext)(η) = −32
3

; y† = 1 ; (59b)

where, in particular, the corresponding expression
for the tidal energy coincides with its counterpart
calculated in an earlier attempt (Valentinuzzi 2006,
Chap. 4, §4.2.1). Using Eqs. (23b), (23c) and (56)-
(59), the HH macrogases equation of state, in the
special situation under discussion, is obtained from
the particularization of Eq. (26) to the case of interest
for the domain, y ≥ 0. If, in particular, y = y† = 1,
Ξj = Ξi, the combination of Eqs. (26) and (56)-(59)
yields Eq. (36).

3.4. HP macrogases

The inner density profile (Hernquist 1990) im-
plies (α, β, γ) = (1, 4, 1), which is defined by Eq. (49),
and related functions and parameters by Eqs. (50)-
(52) or (55)-(57) in the special case of no truncation
radius.

The outer density profile (Schuster 1883,
Plummer 1911) implies (α, β, γ) = (2, 5, 0), which
is defined by Eq. (37), and related functions and pa-
rameters by Eqs. (38)-(40) or (44)-(46) in the special
case of no truncation radius.

With respect to the tidal potential-energy
terms, the particularization of Eqs. (24a) and (24b)
to the case of interest yields:

w(int)(η) = −128
√

2
3

y†
[
Φ(int)

1 (η) + Φ(int)
2 (η)−

−1
2

η2

(1 + Ξj)3/2

]
; (60a)

Φ(int)
1 (η) =

(y†)4 − 12(y†)2 + 2
2[(y†)2 + 1]3

+

+
P (int)(η)

2[(y†)2 + 1]3(y†η + 1)2(η2 + 1)1/2
; (60b)

Φ(int)
2 (η) = −3y†[3(y†)2 − 2]

2[(y†)2 + 1]7/2
·

· ln

[
y† − η +

√
(y†)2 + 1

√
η2 + 1

]

(y†η + 1)
[
y† +

√
(y†)2 + 1

] ; (60c)

P (int)(η) = −2(y†)5η(2η2 + 1) + (y†)4(η2 − 1) +

+ (y†)3η(11η2 + 15) +

+ 4(y†)2(4η2 + 3) + 2y†η − 2 ; (60d)

w(ext)(η) = −64
√

2
[
Φ(ext)

1 (η) + Φ(ext)
2 (η)−

−1
3

1
(1 + Ξi)2

η3

(1 + η2)3/2

]
; (61a)

Φ(ext)
1 (η) =

11(y†)3 − 4y†

3[(y†)2 + 1]3
+

+
P (ext)(η)

3[(y†)2 + 1]3(y†η + 1)(η2 + 1)3/2
; (61b)

Φ(ext)
2 (η) =

(y†)2[2(y†)2 − 3]
[(y†)2 + 1]7/2

·

· ln

[
y† − η +

√
(y†)2 + 1

√
η2 + 1

]

(y†η + 1)
[
y† +

√
(y†)2 + 1

] ; (61c)

P (ext)(η) = (y†)5η2(2η2 + 3)− (y†)4η(4η2 + 5)−
−(y†)3(12η4 + 21η2 + 11)− (y†)2η(3η2 + 5) +

+y†(η4 + 6η2 + 4) + η3 ; (61d)

using Eqs. (23b), (23c), (39), (40), (51), and (52), the
HP macrogases equation of state is obtained from the
particularization of Eq. (26) to the case of interest for
the domain, y ≥ 1.

In absence of truncation radius, the density
drops to zero when the radius tends to infinity, Ξ →
+∞, η → +∞, and Eqs. (38)-(40), (50)-(52), reduce
to (44)-(46), (55)-(57), respectively, and Eqs. (60)-
(61) reduce to:

lim
η→+∞

w(int)(η) = − 64
√

2y†

3[(y†)2 + 1]3
·

·


[(y†)4 − 4(y†)3 − 12(y†)2 + 11y† + 2]−

−3y†[3(y†)2 − 2]√
(y†)2 + 1

ln

√
(y†)2 + 1− 1

y†
[
y† +

√
(y†)2 + 1

]


 ;

y† 6= 1 ; (62a)
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lim
η→+∞

w(int)(η) =
8
3

[
2
√

2 + 3 ln
√

2− 1√
2 + 1

]
;

y† = 1 ; (62b)

lim
η→+∞

w(ext)(η) = − 64
√

2
3[(y†)2 + 1]3

·

·


[2(y†)4 + 11(y†)3 − 12(y†)2 − 4y† + 1]−

−3(y†)2[−2(y†)2 + 3]√
(y†)2 + 1

ln

√
(y†)2 + 1− 1

y†
[
y† +

√
(y†)2 + 1

]




y† 6= 1 ; (63a)

lim
η→+∞

w(ext)(η) =
8
3

[
2
√

2 + 3 ln
√

2− 1√
2 + 1

]
;

y† = 1 ; (63b)

where, in particular, the related expression of the
tidal energy coincides with its counterpart calculated
in an earlier attempt (Valentinuzzi 2006, Chap. 4,
§4.2.2). Using Eqs. (23b), (23c) and (45), (46), (56),
(57), (60), (61), the HP macrogases equation of state
in the special situation under discussion, is obtained
from the particularization of Eq. (26) to the case of
interest, for the domain, y ≥ 0.

3.5. HN macrogases

The inner density profile (Hernquist 1990) im-
plies (α, β, γ) = (1, 4, 1), which is defined by Eq. (49),
and related functions and parameters by Eqs. (50)-
(52) or (55)-(57) in the special case of no truncation
radius.

The outer density profile (Navarro et al. 1995,
1996, 1997) implies (α, β, γ) = (1, 3, 1), and Eq. (27)
reduces to:

fj(ξj) =
4

ξj(1 + ξj)2
; 0 ≤ ξj ≤ Ξj ; (64)

which, together with its H counterpart expressed
by Eq. (49), has been proved to be consistent with
nonnegative distribution functions, in the parameter
range of interest (Lowenstein and White 1999).

The particularization of Eqs. (17a), (18b), and
(20c) to the case of interest yields:

Fj(ξj) =
8

1 + ξj
− 8

1 + Ξj
; (65)

(νj)mas = 12
[
ln(1 + Ξj)− Ξj

1 + Ξj

]
; (66)

(νj)sel = 36
Ξj(2 + Ξj)− 2(1 + Ξj) ln(1 + Ξj)

(1 + Ξj)2
; (67)

with respect to the tidal potential-energy terms, the
particularization of Eqs. (24a) and (24b) to the case
of interest yields:

w(int)(η) = − 64y†

(y† − 1)3

[
− (y† − 1)2

y†
·

· y†η(y†η + 2)
(y†η + 1)2

+
2y†η(y† − 1)

y†η + 1
+

+2 ln
η + 1

y†η + 1
− (y† − 1)3

1 + Ξj

η2

(y†η + 1)2

]
;

y† 6= 1 ; (68a)

w(int)(η) = − 64η2

(η + 1)2

[
η + 3

3(η + 1)
− 1

1 + Ξj

]
;

y† = 1 ; (68b)

w(ext)(η) = − 64
(y† − 1)2

{
− η

η + 1
−

− y†η
y†η + 1

− y† + 1
y† − 1

ln
η + 1

y†η + 1
−

− (y† − 1)2

(1 + Ξi)2

[
− η

η + 1
+ ln(η + 1)

]}
;

y† 6= 1 ; (69a)

w(ext)(η) = −64
{

1
6

η2(η + 3)
(η + 1)3

− 1
(1 + Ξi)2

·

·
[
− η

η + 1
+ ln(η + 1)

]}
;

y† = 1 ; (69b)

using Eqs. (23b), (23c), (51), (52), (66), and (67), the
HN macrogases equation of state is obtained from the
particularization of Eq. (26) to the case of interest for
the domain, y ≥ 1.

In the absence of truncation radius, the den-
sity drops to zero when the radius tends to infinity,
Ξ → +∞, η → +∞, and Eqs. (50)-(52), reduce to
(55)-(57), respectively, whereas Eqs. (65)-(69) reduce
to:

lim
Ξj→+∞

Fj(ξj) =
8

1 + ξj
; (70)

lim
Ξj→+∞

(νj)mas = +∞ ; (71)

lim
Ξj→+∞

(νj)sel = 36 ; (72)

lim
η→+∞

w(int)(η) = − 64
(y† − 1)3

·

· [(y†)2 − 1− 2y† ln y†
]

;

y† 6= 1 ; (73a)

lim
η→+∞

w(int)(η) = −64
3

; y† = 1 ; (73b)
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lim
η→+∞

w(ext)(η) = − 64
(y† − 1)2

·

·
[
−2 +

y† + 1
y† − 1

ln y†
]

;

y† 6= 1 ; (74a)

lim
η→+∞

w(ext)(η) = −32
3

; y† = 1 ; (74b)

where the self potential-energy profile factor remains
finite, although the mass profile factor undergoes
a logarithmic divergence. Using Eqs. (23b), (23c)
and (72)-(74), the HN macrogases equation of state
(where M†

j and m† appear instead of Mj and m) in
the situation under consideration, is obtained from
the particularization of Eq. (26) to the case of inter-
est, for the domain, y ≥ 0.

4. RESULTS

The macrogases equation of state, Eq. (26),
is shown in the following figures for a number of
cases analysed in Section 3. In particular, owing to
Eqs. (34) and (35), the UU macrogases equation of
state is independent of the scaled truncation radii,
(Ξi, Ξj).

The macrogases equation of state in absence of
truncation radius, is plotted in Fig. 1 for cases (from
top left in clockwise sense) UU, PP, HH, HP, where
Ξj = Ξi and (from bottom to top in each panel)
m =1, 2, ..., 6, for cases UU, PP, HP, and m =10,
20, ..., 60, for case HH. Shallower density profiles
(UU, PP) show the occurrence of two extremum
points: one minimum on the left and one maximum
on the right, for any values of the fractional mass,
m. Steeper density profiles (HP, HH) still exhibit
extremum points, but none below a treshold, where
the critical isofractional mass curve shows a single
horizontal inflexion point.

As already noticed in an earlier attempt
(CS90), the same trend is shown by van der Waals’
(1873) isothermal curves and, in fact, the van der
Waals’ equation of state looks similar to the macro-
gases equation of state, Eq. (26), where three vari-
ables also appear. Thick curves represent the locus of
minimum (left branch) and maximum (right branch)
points. The critical isofractional mass curve, when
it appears, is also thickened.

A main feature is that, above the critical
isofractional mass curve, for any selected value of
m, a range in fractional virial potential energy, φ,
exists, φmin < φ < φmax, where three different con-

figurations i.e. different fractional truncation radius,
y, correspond to the same value of φ. By analogy
with van der Waals’ isothermal curves, one could ar-
gue the existence of a bell-shaped region in the Oyφ
plane, within which the extremum points are located,
and where a phase transition occurs. Further inves-
tigation is needed on this point, but it lies outside
the aim of the current paper.

The macrogases equation of state in pres-
ence of truncation radius is plotted in Figs. 2 and
3, respectively, for different choices of the fractional
truncation radii, (Ξi,Ξj), represented on each panel
where (from bottom to top) m =10, 20, ..., 60, and
approximate values of the parameters related to the
critical point i.e. the horizontal inflexion point on
the critical isofractional mass curve (marked by a
St.Andrew’s cross), are listed in Table 1.

Table 1. Approximate values of parameters related
to the critical point i.e. the horizontal inflexion point
on the critical isofractional mass curve, for the den-
sity profiles under investigation. Dashes instead of
numbers mean the absence of the critical curve in
the corresponding case. Numbers in brackets denote
the values of scaled truncation radii, (Ξi, Ξj). In
the absence of truncation radius, Ξ → +∞, the case
considered is Ξj/Ξi → 1, which implies y† = y. For
homogeneous configurations (case UU) the isofrac-
tional mass curves are independent of (Ξi, Ξj).

case (Ξi,Ξj) m† m y† y ϕ
HN (05-05) — — — — —

(05-10) 04.41 09.45 1.04 2.08 09.16
(05-20) 05.14 15.49 1.14 4.56 13.44
(10-05) 03.17 03.68 0.88 0.44 03.90
(10-10) 06.36 11.46 1.38 1.38 11.48
(10-20) 07.24 18.33 1.50 3.00 16.47
(20-05) 04.99 05.27 1.18 0.29 05.75
(20-10) 08.10 13.30 1.62 0.81 13.74
(20-20) 09.10 20.99 1.75 1.75 19.48

HH (05-05) 07.10 07.10 2.32 2.32 06.86
(05-10) 07.72 09.19 2.43 4.86 08.17
(05-20) 07.90 10.32 2.45 9.80 08.62
(10-05) 11.15 09.37 3.18 1.59 09.44
(10-10) 11.88 11.88 3.30 3.30 11.03
(10-20) 12.10 13.28 3.33 6.66 11.57
(20-05) 15.00 11.50 3.77 0.94 12.04
(20-10) 15.83 14.42 3.88 1.94 13.94
(20-20) 16.08 16.08 3.92 3.92 14.60
(∞-∞) 20.22 20.22 4.27 4.27 18.15

HP (∞-∞) 04.59 04.59 2.05 2.05 06.03
PP (∞-∞) — — — — —
UU (Ξi,Ξj) — — — — —
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Fig. 1. Isofractional mass curves related to (from top left in clockwise sense) UU, PP, HH, HP, macrogases
for Ξ → +∞, Ξj/Ξi → 1. Thick curves represent the locus of minimum (left branch) and maximum (right
branch) points. The critical curve is also thickened, and the horizontal inflexion point, or critical point, is
defined (when present) as the tangent point with respect to the locus of the extremum points. The value of
the fractional mass is m = φ(1,m) and can be read on the intersection between the selected curve and the
dashed vertical line, y† = y = 1, provided the density profile of the inner and the outer subsystem belong
to the same family (UU, PP, HH). All the curves diverge at y → 0 and converge to 0 at y → +∞. For
UU macrogases, the extremum points of the m = 0 isofractional mass curve occur at y = 0 and y = 3/

√
5,

respectively, and the locus of the minimum points has a vertical asymptote, y =
√

5/3. For PP macrogases,
the extremum points of the m = 0 isofractional mass curve occur at y = 0 and y ≈ 1.20, respectively, and
the locus of the minimum points has a vertical asymptote, y ≈ 0.84.
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It can be seen that the occurrence of the trun-
cation radius makes little change to the trend of the
isofractional mass curves. In general, decreasing the
outer scaled truncation radius, Ξj , yields more pro-
nounced extremum points and vice versa. Much
smaller changes, in the same sense, are produced
by decreasing the inner scaled truncation radius, Ξi.
This is why, in the cases under discussion, the mass
of the outer subsystem is dominant with respect to
the mass of the inner subsystem, m À 1. The criti-
cal isofractional mass curve does not appear for ear-
lier truncated HN density profiles, (Ξi, Ξj) = (5, 5),

which are shallower than their latter truncated coun-
terparts.

Reduced truncation radii, Ξ = R/r†, may be
conceived as concentrations of the related matter dis-
tribution (e.g. Navarro et al. 1997, CM03, Caimmi
et al. 2005) and the selected range, 5 ≤ Ξ ≤ 20,
is consistent with the results of dark matter (here-
after quoted as DM) halo numerical simulations (e.g.
Bullock et al. 2001) and elliptical galaxy (hereafter
quoted as EG) observations (e.g. Lowenstein and
White 1999).

Fig. 2. Isofractional mass curves pertaining to HH macrogases, for different choices of scaled truncation
radii, (Ξi, Ξj), indicated on each panel, where (from bottom to top) m =10, 20, ..., 60. The critical isofrac-
tional mass curve, with the horizontal inflexion point or critical point, marked by a St. Andrew’s cross, is
thickened on each panel. All the curves diverge at y → 0 and converge to 0 at y → +∞.
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Fig. 3. Isofractional mass curves pertaining to HN macrogases, for different choices of scaled truncation
radii, (Ξi, Ξj), indicated on each panel, where (from bottom to top) m =10, 20, ..., 60. The critical isofrac-
tional mass curve, with the horizontal inflexion point or critical point, marked by a St. Andrew’s cross, is
thickened on each panel. All the curves diverge at y → 0 and converge to 0 at y → +∞.
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5. APPLICATION TO ELLIPTICAL
GALAXIES AND THEIR
HOSTING HALOES

According to current cosmological scenarios
(e.g. Mota and van de Bruck 2004, Percival 2005,
Horellou and Berge 2005, Maor and Lahav 2005,
Nunes and Mota 2006), density perturbations at re-
combination epoch (z ≈ 1100) initially expand with
the universe, turn around, collapse, and finally viri-
alize (at least in their inner and denser regions).

Virialized density perturbations, such as typ-
ical elliptical galaxies (EGs) and clusters of galax-
ies, may be idealized, to a first extent, as two
homeoidally striated, similar and similarly placed,
density profiles. In the following, attention shall be
focused on EGs.

5.1. General considerations and
main assumptions

A recent investigation performed on an opti-
cally complete sample of 42 EGs, for which X-ray gas
temperatures and central stellar velocity dispersions
were determined (Davis and White 1996), has shown
evidence that, in general, EGs contain substantial
amounts of DM (Loewenstein and White 1999). Ac-
cordingly, more than about 20% and 39%-85% of the
total mass within one and six optical radii, respec-
tively, is in form of (non baryonic) DM, depending
on the stellar density profile and observed value of
X-ray gas temperature and central stellar velocity
dispersion. The comparison between the velocity
dispersion distributions for DM and stars, assuming
isotropic orbits, shows that the DM is dynamically
”hotter” than the stars, by a factor 1.4-2 (Loewen-
stein and White 1999).

The above investigation cannot be considered
as conclusive in favour of the existence of DM haloes
hosting EGs. In fact, it has been pointed out that the
attenuation (in particular, the scattering) by dust
grains has the same effect on the stellar kinematics
as a DM halo (Baes and Dejonghe 2001). Accord-
ing to a recent attempt, no strong evidence for DM
haloes within 1-3 optical radii has been found in a
restricted sample of 4 early-type EGs, using dynam-
ical modelling (Samurovic and Danziger 1995). Be-
yond 1-3 optical radii, the X-ray methodology shows
the need of DM wherever an X-ray halo is detected
(Samurovic and Danziger 1995). A similar trend is
exhibited by an additional early-type EG (Samurovic
and Danziger, 1996). In any case, current cosmolog-
ical scenarios (ΛCDM, QCDM) predict DM haloes
hosting EGs, as well as spiral galaxies, for which
there are lots of empirical evidence (e.g. flat rota-
tion curves well outside optical radii). For this rea-
son, EGs are also assumed to be embedded within
DM haloes.

An analysis on the evolution of the physical
properties of cosmological baryons at low redshifts
(z <∼ 5) has recently been performed (Valageas et

al. 2002), which (i) yields robust model-independent
results that agree with numerical simulations; (ii) re-
covers the fraction of matter within different phases
and the spatial clustering computed by numerical
simulations; (iii) predicts a soft X-ray background
due to the ”warm” intergalactic medium component,
that is consistent with observations. The related
baryon fraction in the present universe is found to
be 7% in hot gas, 24% in the warm intergalactic
medium, 38% in the cool intergalactic medium, 9%
within star-like objects and, as a still unobserved
component, 22% of dark baryons associated with
collapsed structures, with a relative uncertainty no
larger than 30% on these figures. Then the amount
of still undetected baryons is about one fifth of the
total, one fourth of the observed baryons (intergalac-
tic medium, stellar components, and hot gas), and at
least twice the stellar-like component.

According to recent investigations, HH (e.g.
Ciotti 1996) or HN (e.g. Loewenstein and White
1999) models provide viable representations for the
inner, baryonic, and the outer, nonbaryonic subsys-
tem, respectively. The above mentioned mass distri-
butions were found to be self-consistent, in the pa-
rameter range of interest, with regard to the non neg-
ativity of the distribution function (e.g. Ciotti 1996,
Loewenstein and White 1999) by use of a theorem
stated in an earlier attempt (Ciotti and Pellegrini
1992).

If undetected baryons in EGs are present as
hot gas, the gaseous subsystem is expected to be less
concentrated than the stellar one, as in the Coma
cluster of galaxies (e.g. Briel et al. 1992). If unde-
tected baryons in EGs are present as unseen stars,
the undetected subsystem is expected to be as con-
centrated as the stellar one. Either assumption is
necessary in dealing with two-component systems.
The real situation lies between the limiting cases
mentioned.

The typical velocity dispersion components,
deduced by use of the virial theorem (hereafter re-
ferred to, in general, as the virial velocity disper-
sions) are global quantities, related to the virial po-
tential energy of the subsystem as a whole, and so, by
construction, independent of the specific orbital dis-
tribution of the particles. This important property,
however, is also a weakness of the virial theorem,
in dealing with velocity dispersion components mea-
sured in the central region of a galaxy. In fact, it is
well known that the related values can significantly
differ for structurally identical subsystems (and so
characterized by identical virial velocity dispersion
components), due to different orbital structures (e.g.
de Zeeuw and Franx 1991). When using central ve-
locity dispersion components, an approach based on
Jeans equations (even though still questionable) is to
be preferred (e.g. Ciotti et al. 1996, Ciotti and Lan-
zoni 1997, Loewenstein and White 1999). On the
other hand, a comparison between the results ob-
tained by use of either of the above mentioned meth-
ods, may provide additional support to both of them
and/or useful indications on the nature of the prob-
lem under investigation.
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Strictly speaking, the central velocity disper-
sions (along the line of sight) in EGs, as deduced
from observations, should be scaled to the virial ve-
locity dispersions. Both observational evidence (e.g.
Gerhard et al. 2001) and theoretical arguments
(e.g. Nipoti et al. 2002) point towards the exis-
tence of dynamical homology in EGs. In particu-
lar, a linear relation is found between a local pa-
rameter, averaged central velocity dispersion, and a
global parameter, inferred maximum circular veloc-
ity, σ0.1 = (2/3)(vc)max (Gerhard et al. 2001). Ac-
cordingly, the central velocity dispersion components
are expected to be proportional to the virial velocity
dispersion components. Then it could be assumed
that the related proportionality factor is of the order
of unity.

In fact, typical peculiar velocity component
distributions within EGs show a maximum which is
rapidly attained in the central region (at about 1
kpc), and a slow decrease occurs moving outwards
(no more than about 13% the maximum at about
10 kpc), at least in the case of isotropic orbits; for
further details see related attempts (e.g. Loewen-
stein and White 1999). Accordingly, both the central
and the virial velocity dispersion components are ex-
pected to be of comparable order, slightly less than
the maximum of the peculiar velocity component dis-
tribution (e.g. Cappellari et al. 2006). On the other
hand, most EGs are moderately radially anisotropic
(e.g. Gerhard et al. 2001), and the related vari-
ation in central velocity dispersion (an increase for
increasing σ2

i and vice versa) is also expected to be
moderate.

5.2. Input parameters, specific assumptions,
and results

The main assumptions of the current model
are (i) homeoidally striated density profiles and (ii)
similar and similarly placed boundaries. Aspherical,
heterogeneuos, self-gravitating fluids in dynamical
or hydrostatic equilibrium exhibit isopycnic surfaces
different from ellipsoids (e.g. Chandrasekhar 1933,
Chandrasekhar and Lebovitz 1962, Vandervoort and
Welty 1981, Lai et al. 1993), and the above assump-
tion (i) is due to reasons of simplicity.

Axisymmetric configurations with nonsimilar
boundaries have been investigated in the special case
of homogeneous density profiles i.e. UU macrogases,
where the shape of one component is kept fixed and
an additional variable, the axis ratio of the other
component, together with an additional relation, the
angular momentum conservation of the other com-
ponent, must be considered (CS90). A main feature
is that the isofractional mass curves on the (Oyφ)
plane cannot converge to 0 at y → +∞, as the end-
ing point occurs when the inner subsystem attains
a flat configuration. For further details refer to the
parent paper (CS90). Being the calculations for het-
erogeneous density profiles much more complicated,
the above assumption (ii) is also due to reasons of
simplicity. It can be expected that the effect due
to nonsimilar boundaries is maximum for homoge-

neous density profiles, and decreases as the profile is
steeper, to be null for mass points surrounded by a
massless atmosphere (Roche ellipsoids). Then the re-
sults found for homogeneous density profiles (CS90)
make a valid reference for inhomogeneous density
profiles. In conclusion, the above assumptions (i)
and (ii) are related to a viable model which can be
used for specific applications to large-scale celestial
objects, in particular EGs.

Given a typical EG, a natural question (in the
light of the model under discussion) arises about its
position on the (Oyφ) plane for assigned density pro-
files and specified input parameters. Towards this
aim, the following main assumptions are made: (a)
the stellar and the DM distributions are described by
homeoidally striated, similar and similarly placed,
HH or HN density profiles, respectively; (b) un-
detected baryons trace either DM haloes or EGs;
and (c) the virial theorem holds for each subsystem
within the tidal potential of the other one.

According to the above assumptions, a typi-
cal EG embedded in a DM halo is idealized as two
homeoidally striated, similar and similarly placed
matter distributions, where the star and non bary-
onic subsystem are described by HH or HN density
profiles, respectively.

For assigned density profiles, the macrogases
equation of state, Eq. (26), depends on two inde-
pendent variables: the fractional truncation radius,
y = Rj/Ri, and the fractional mass, m = Mj/Mi,
or their scaling counterparts, y† = r†j/r†i and m† =
M†

j /M†
i . To represent celestial objects in the (Oyφ)

plane, two additional equations are requested. Hav-
ing in mind an application to EGs and their host-
ing haloes, denoted in the following by the indices
i and j, respectively, for y ≥ 1, an additional rela-
tion between the stellar projected velocity dispersion,
(σi)Re/8, averaged over the aperture used for spec-
troscopic observations (r = Re/8), and the fractional
scaling radius, y†, may be deduced from the virial
theorem related to the star subsystem, Eq. (8b), by
solving the appropriate Jeans equations, following an
earlier approach (Ciotti et al. 1996). The result may
be written as:

(σi)2Re/8 =
GMi

r†i
ψi(y†,m†) ; (75)

where ψi is a function calculated by a numerical al-
gorithm.

Use of Eq. (75) implies further restrictions, as
its validity is limited to (i) spherically-symmetric
matter distributions; (ii) isotropic peculiar veloc-
ity distributions; (iii) infinite truncation radii; (iv)
HH density profiles. Concerning points (i)-(iii) men-
tioned above, acceptable approximations may safely
be expected. On the other hand, HH density profiles
provide a viable description to EGs embedded within
DM haloes (e.g. Ciotti 1996).

At this stage, an additional relation is needed.
The mere existence of a fundamental plane (Djor-
govski and Davis 1987, Dressler et al. 1987) indi-
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cates that structural properties in EGs span a narrow
range, suggesting that some self-regulating mecha-
nism must be at work during formation and evolu-
tion. In particular, projected light profiles from EGs
exhibit large degree of homogeneity and may well be
fitted by the de Vaucouleurs r1/4 law. Accordingly,
a narrow range may safely be expected also for EG
fractional mass and the assumption, m = const, ap-
pears to be a viable approximation. The last, to-
gether with Eqs. (26) and (75), makes a system of
three equations in the three unknowns, φ, y, m, via
Eqs. (21), for HH density profiles. Then the posi-
tion of EGs and their hosting haloes on a selected
isofractional mass curve in the (Oyφ) plane, can be
determined.

The sample used (N = 16) is extracted from a
larger sample (N = 25) of EGs and lenticular galax-
ies investigated within the SAURON project (Cap-
pellari et al. 2006, Table 1 therein), for which the
parameters of interest i.e. masses, projected central
velocity dispersions, and effective radii, can be de-
rived from the data listed in Table 2.

More specifically, with regard to the in-
ner (stellar) subsystem, projected central veloc-
ity dispersions are deduced from the luminosity-

weighted second moment of the line-of-sight veloc-
ity distribution within the effective radius, σe, as
(σi)Re/8 = 80.066σe; masses are deduced from lumi-
nosities and mass-luminosity ratios (in I-band), as
Mi/M10 = (L/L¯)[(Mi/L)/(1010m¯/L¯)]; L/L¯ =
exp10{−0.4[IT − (m̂− M̂)− 4.11]}; scaling radii are
calculated from effective radii (in arcsec) and dis-
tances, by use of a profile factor, equal to 1.81,
related to the case under discussion (Hernquist
1990), as r†i /kpc = (Re/kpc)/1.81; Re/kpc =
[(Re/arcsec)(d/Mpc)]/206.265; d/Mpc = exp10[(m̂−
M̂)/5−5]. For further details refer to the parent pa-
per (Cappellari et al. 2006).

The substitution of the selected value of the
fractional mass, m, into Eq. (75), allows the value
of the fractional scaling radius, y†, for each sample
object. Finally, the substitution of (y†,m) values
into Eq. (26), particularized to HH density profiles
via Eqs. (56)-(59), allows the value of the fractional
virial potential energy, φ, and the position of each
sample object on a selected isofractional mass curve
in the (Oyφ) plane, can be determined.

Table 2. Data related to a subsample (N = 16) extracted from a sample (N = 25) of EGs and lenticular
galaxies investigated within the SAURON project (Cappellari et al. 2006), and deduced values of the pa-
rameters of interest. Column caption: (1) NGC number; (2) effective (half-light) radius, Re, measured in the
I-band; (3) total observed I-band galaxy magnitude; (4) mass-luminosity ratio (including DM) deduced from
the best fitting three-integral Schwartzschild model, computed at a fiduciary inclination; (5) mass-luminosity
ratio of the stellar population; (6) galaxy distance modulus (hats avoid confusion with the fractional mass,
m, and the total mass, M); (7) galaxy mass, calculated as Mi/M10 = (L/L¯)[(Mi/L)/(1010m¯/L¯)];
L/L¯ = exp10{−0.4[IT − (m̂ − M̂) − 4.11]}; (8) galaxy central velocity dispersion, deduced from the
luminosity-weighted second moment of the line-of-sight velocity distribution within the effective radius,
σe, as (σi)Re/8 = 80.066σe; (9) galaxy scaling radius, calculated as r†i /kpc = (Re/kpc)/1.81; Re/kpc =
[(Re/arcsec)(d/Mpc)]/206.265; d/Mpc = exp10[(m̂ − M̂)/5 − 5]. The factor, 1.81, is related to an assumed
Hernquist profile for the inner subsystem (Hernquist 1990). The factor, 206.265, is related to the choice of
measure units. For further details refer to the parent paper (Cappellari et al. 2006).

NGC Re IT M/L Mi/L (m̂− M̂) Mi (σi)Re/8 r†i
(arcsec) (mag) (I-band) (I-band) (mag) (M10) (km s−1) (kpc)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

0821 039.0 09.47 3.08 2.60 31.85 10.26 216.80 2.45
2974 024.0 09.43 4.52 2.34 31.60 07.61 267.28 1.34
3377 038.0 08.98 2.22 1.75 30.19 02.35 158.30 1.11
3379 042.0 08.03 3.36 3.08 30.06 08.80 230.57 1.16
3608 041.0 09.40 3.71 2.57 31.74 09.77 204.19 2.45
4278 032.0 08.83 5.24 3.05 30.97 09.64 264.98 1.34
4374 071.0 07.69 4.36 3.08 31.26 36.35 318.90 3.40
4458 027.0 10.68 2.28 2.27 31.12 01.50 097.50 1.21
4473 027.0 08.94 2.91 2.88 30.92 07.86 220.24 1.10
4486 105.0 07.23 6.10 3.33 30.97 45.97 341.84 4.40
4552 032.0 08.54 4.74 3.35 30.87 12.62 289.07 1.28
4621 046.0 08.41 3.03 3.12 31.25 18.80 242.04 2.19
4660 011.0 09.96 3.63 2.96 30.48 02.11 212.21 0.37
5813 052.0 09.12 4.81 2.97 32.48 28.89 263.83 4.36
5845 004.6 11.10 3.72 2.96 32.01 03.02 274.16 0.31
5846 081.0 08.41 5.30 3.33 31.92 37.19 273.01 5.25
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The results are plotted for various choices of
scaled truncation radii, (Ξi, Ξj), and different choices
of fractional masses, m, in Fig. 4.

Isofractional mass curves, m = 10 (top pan-
els), and m = 20 (bottom panels), are labelled by the

selected choices of scaled truncation radii, (Ξi,Ξj),
indicated near the corresponding curves, and the
sample objects are represented as dots. Curves lie
above and below the critical curve for m = 10, while
all curves lie above the critical curve for m = 20,
with respect to the cases considered.

Fig. 4. Isofractional mass curves, m = 10 (top panels), and m = 20 (bottom panels), pertaining to HH
macrogases, for different choices of scaled truncation radii, (Ξi, Ξj), as indicated near the corresponding
curves, and corresponding positions of N = 16 EGs (dots), listed in Table 2. Different cases correspond to
vertical shifts of the sample objects. Larger dots represent configurations where the virial potential energy of
the inner subsystem attains the maximum value with respect to a frozen outer subsystem.
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Fig. 5. The parameter space of the cases plotted in Fig. 4, roughly outlined by the shaded region. Dots and
asterisks correspond to inner scaled truncation radii, Ξi = 5 and 10, respectively. For fixed fractional mass,
m, the corresponding outer scaled truncation radii read Ξj = 5, 10, 20, from top to bottom. Small and large
symbols represent sample objects and configurations where the virial potential energy of the inner subsystem
attains the maximum value with respect to a frozen outer subsystem, respectively. No such configuration
exists in the cases considered, for fractional masses, m

<∼ 20. The related parameter space is restricted to
a region close to the angle defined by the locus of large dots and asterisks, respectively. The intersection
between the above mentioned loci occurs for outer scaled truncation radii, Ξj, slightly larger than 10. The
change of position for NCG 3379, due to a change in effective radius, from Re = 42.0 to Re = 54.8, is
indicated by squares, regardless of the vertical scale.
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The above description is due to the reasons
of simplicity, but the model does not necessarily im-
ply that sample objects must be located on the same
isofractional mass curve and/or correspond to the
same scaled truncation radii. What is relevant is the
position of EGs on the (Oyφ) plane, which implies
the following assumptions: (i) there are in the uni-
verse 16 EGs with intrinsic values of the parameters
equal to their counterparts listed in Table 2 for sam-
ple objects, and (ii) related star distributions are well
described by H density profiles.

In fact, observational uncertainties on the
quantities of interest (Cappellari et al. 2006) con-
tribute to large errors in the fractional scaling radius,
y†. As an example, a single galaxy, NGC 3379, and a
single parameter, the effective radius, shall be consid-
ered. In the case under discussion, Re = (42.0∓ 7.1)
arcsec (Cappellari et al. 2006), but different esti-
mates exist, such as (54.8 ∓ 3.5) arcsec (Capaccioli
et al. 1990) which is consistent with the above result
within 2σRe

. Using the latter value, the fractional
scaled radius, y†, passes from 5.74 to 4.08 for the
fractional mass m = 10, and from 8.45 to 6.07 for
m = 20.

Different values of parameters, m, Ξi, Ξj ,
make sample objects locate on different isofractional
mass curves, as shown in Fig. 4, where y depends on
m but is independent of Ξi and Ξj . Fiduciary val-
ues of the above mentioned parameters, say 10 ≤
m ≤ 20, 5 ≤ Ξu ≤ 20, u = i, j, define a region on
the (Oyφ) plane, approximately as: 2.5 < y† < 6.0,
7 < φ < 11, m = 10; 4 < y† < 9, 17 < φ < 23,
m = 20; where sample objects are positioned, as
shown in Fig. 5.

Dots and asterisks correspond to inner scaled
truncation radii, Ξi = 5 and 10, respectively. Small
and large symbols represent sample objects and con-
figurations where the virial potential energy of the
inner subsystem attains the maximum value with re-
spect to a frozen outer subsystem, respectively. No
such configuration exists in the cases considered, for
fractional masses, m

<∼ 20. The related parameter
space is restricted to a region close to the angle de-
fined by the locus of large dots and asterisks, re-
spectively. The intersection between the above men-
tioned loci occurs for outer scaled truncation radii,
Ξj , slightly larger than 10. The change of position for
NCG 3379, due to a change in effective radius, from
Re = 42.0 to Re = 54.8, is indicated by squares,
regardless of the vertical scale.

In the special situation where the outer sub-
system remains frozen and the inner one is free to
contract or to expand, with unchanged mass and
density profile, the virial potential energy of the inner
subsystem may attain maximum (Secco 2000, 2001,
2005, Marmo and Secco 2003). For HH density pro-
files, lower fractional masses (m = 10) yield no ex-
tremum point, while the opposite holds for larger
fractional masses (m = 20). The special configu-
rations related to the maximum virial potential en-
ergy of the inner subsystem, when the outer subsys-
tem remains frozen (hereafter quoted as ”the max-
imum configuration”), are represented as large dots

in Fig. 4 (bottom panels) and large dots and asterisks
in Fig. 5.

The maximum configuration appears to have
little relevance in the light of the current model for
a number of reasons. Firstly, it occurs for fractional
masses above a threshold. Secondly, the loci of max-
imum configurations on the (Oyφ) plane show no
correlation with the parameter space of the model
related to sample objects. More precisely, the loci
of maximum configurations are narrower and extend
from bottom left to top right, while sample objects
lie on a broader and less inclined band, as shown in
Fig. 5.

The position of the maximum configuration on
the isofractional mass curves m = 20 depends on the
concentration of the outer subsystem, while the posi-
tion of sample objects can only be vertically shifted,
as the fractional scaling radius, y†, is independent of
the concentration, via Eq. (75). In this view, it is dif-
ficult to conceive maximum configurations as ending
points of any evolutionary track on the (Oyφ) plane,
even if observational uncertainties are high.

EG position on the (Oyφ) plane, in particu-
lar along an isofractional mass curve (m = const),
represents the end point of evolutionary tracks on
the above mentioned plane. The pertaining config-
urations may be thought of as virialized to a good
extent, in that sample objects listed in Table 2 show
no sign of ungoing merger and star formation burst.
The coincidence of ending points with maximum con-
figurations would imply, for fixed (m,Ξi,Ξj): (i) a
single ending point for all sample objects i.e. ho-
mologous evolution, and (ii) m above the threshold
for the occurrence of maximum configurations, which
does not necessarily happen, as shown in Fig. 4. On
the contrary, the evolution of EGs appears to be
non homologous, in the sense that different end-
ing points take place along the selected isofractional
mass curves defined by the HH macrogases equation
of state.

Owing to Eqs. (9b) and (12b), the total energy
of the virialized system reads:

E =
1
2
[(Eij)vir + (Eji)vir] = −(Ei)kin − (Ej)kin ;

(76)
and the combination of Eqs. (12b), (25), and (76)
yields:

E =
1
2
(1+φ)(Eij)vir = −(1+φ)(Ei)kin; φ =

(Ej)kin

(Ei)kin
;

(77)
where the kinetic energy of the inner subsystem,
(Ei)kin, may be deduced from observations, and the
related total energy, E, may be read on the vertical
axis of Fig. 4. Within the range, φmin ≤ φ ≤ φmax,
three configurations exist with same virial potential
(or kinetic) energy ratio, φ, and fractional mass, m,
but different fractional truncation radius, y.

The restriction to constant fractional mass
also in time, makes evolutionary tracks on the (Oyφ)
plane locate on the related isofractional mass curve,
(m = const), where displacements from the left to
the right (increasing y values) are due to energy dis-
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sipation, and displacements from the right to the left
(decreasing y values) are due to energy acquisition.
In the former alternative, changes in φ and (Eij)vir

must act to yield a decreasing E (increasing in abso-
lute value), the larger energy change being related to
the larger y change. For further details refer to Ap-
pendix 2. In this view, the maximum configuration
corresponds to a special energy change, (∆E)max,
and to a special y change, (∆y)max. But there is no
apparent reason for any special amount of energy to
be dissipated, starting from the beginning of evolu-
tion, to attain the maximum configuration. A similar
result holds in the latter alternative. In fact, it can
be seen in Fig. 4 that the sample objects show no
connection with the maximum configuration. Then
the maximum configuration, which implies a frozen
outer subsystem, has no special relevance in the light
of the current model. For an analysis of different
theories on the maximum configuration, refer to a
specific study (Valentinuzzi 2006, Chaps. 5-5).

The above results hold if the baryonic sub-
system is mainly in form of stars. Let us take into
consideration a different scenario, where a less con-
centrated gaseous subsystem than the stellar one is
also present, as in the Coma cluster of galaxies (e.g.
Briel et al. 1992), and assume the same mass dis-
tribution as in the non baryonic matter to preserve
use of two-component models (Caimmi 2003). Ac-
cordingly, a typical EG is idealized as formed by an
inner subsystem made of stars and an outer subsys-
tem made of gas and non baryonic matter. As the
amount, of baryonic and non baryonic matter have
to remain unchanged, the inner and the outer subsys-
tem are less and more massive, respectively, than in
absence of undetected baryons. Again, it is assumed
that the related mass distributions are represented
by HH density profiles. Then a similar procedure
may be followed, keeping in mind that the fractional
mass m is the ratio of nonbaryonic + extragalactic
gas mass to star mass. For further details refer to an
earlier attempt (CM03).

6. CONCLUSION

The two-component systems were regarded as
(two-component) macrogases, and the related equa-
tion of state was formulated using the virial theorem
for subsystems (Limber 1959, Brosche et al. 1983,
Caimmi et al. 1984, Caimmi and Secco 1992), under
the restriction of (i) homeoidally striated ellipsoids
(Roberts 1962) and (ii) similar and similarly placed
boundaries.

Explicit calculations were carried out for a
useful reference case and a few cases of astrophysical
interest, both in presence and in absence of trun-
cation radius. More specifically, the following cases
have been dealt with: IJ= UU, PP, HH, HP, HN,
where I and J denote the inner and the outer den-
sity profile, respectively, and the other captions re-
late to the following density profiles: U (ρ =const),
P (Plummer 1911), H (Hernquist 1990), N (Navarro

et al. 1995, 1996, 1997). Shallower density profiles
(UU, PP), have been found to yield an equation of
state, φ = φ(y, m), characterized by the appearance
of two extremum points, one maximum and one min-
imum, as in an earlier attempt (CS90). Steeper den-
sity profiles (HH, HP, HN), were found to produce a
similar equation of state where, in addition, a single
horizontal inflexion point occurs in a critical isofrac-
tional mass curve, and isofractional mass curves per-
taining to lower values, m = Mj/Mi < mcrit, show
no extremum point. The similarity between isofrac-
tional mass curves and van der Waals’ isothermal
curves, has suggested the possibility that a phase
transition could take place in a bell-shaped region of
the (Oyφ) plane.

Further investigation was devoted to HH den-
sity profiles for which a numerical algorithm (Ciotti
et al. 1996) was used to represent EGs and their
hosting DM haloes along selected isofractional mass
curves on the (Oyφ) plane, under the assumption
that the related fractional mass has the same value
in different systems. In the light of the model, the
evolution of EGs was found to be not strictly ho-
mologous, in the sense that the end of evolutionary
tracks on the (Oyφ) plane occur at different points
along the related isofractional mass curve, instead of
being close to a single point.
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APPENDICES

A1. Plummer density profiles and
n = 5 polytropes

The Lane-Emden equation reads (e.g. Lane
1870, Emden 1907, Chandrasekhar 1933, Horedt
2004, Chap. 4, §2.1):

1
ξ2
LE

d

dξLE

(
ξ2
LE

dθ

dξLE

)
= −θn ; (78a)

θ(0) = 1 ; θ(ΞLE) = 0 ; (78b)

ξLE =
r

αLE
; ΞLE =

R

αLE
; (78c)

ρ(r) = λθn(ξLE) ; (78d)

where n is the polytropic index (0 ≤ n ≤ 5 and
0.5 < n ≤ 5 for realistic collisional and collision-
less equilibrium configurations, respectively), αLE is
a scaling radius and λ is the central density.

In the special case n = 5, the integration
of Eq. (78a) yields (Schuster 1883, see also Chan-
drasekhar 1939, Chap. IV, §4, Horedt 2004, Chap. 4,
§2.3.3):

θ(ξLE) =
(

1 +
1
3
ξ2
LE

)−1/2

;

ΞLE → +∞ ; n = 5 ; (79a)

dθ

dξLE
= −1

3
ξLE

(
1 +

1
3
ξ2
LE

)−3/2

; (79b)

−ξ2
LE

dθ

dξLE
=
√

3
(

ξLE√
3

)3
[
1 +

(
ξLE√

3

)2
]−3/2

(79c)

lim
ξLE→+∞

(
−ξ2

LE

dθ

dξLE

)
=
√

3; (79d)

and the general expression of a polytrope mass (e.g.
Chandrasekhar 1939, Chap. IV, §4, Horedt 2004,
Chap. 4, §2.6.3):

M = −4πλα3
LEΞ2

LE

(
dθ

dξLE

)

ΞLE

; (80)

in the case of interest, using Eqs. (79), reduces to:

M =
√

3 4πλα3
LE ; n = 5 ; (81)

finally, the explicit expression of the density profile
results from the combination of Eqs. (78d) and (79a),
as:

ρ(r) = λ

(
1 +

1
3
ξ2
LE

)−5/2

; n = 5 ; (82)

and the following relation is derived from comparison
with Eqs. (14a) and (27):

ρ†2χξ−γ(1 + ξα)−χ = λ

(
1 +

1
3
ξ2
LE

)−5/2

; (83)

which, in turn, implies the following:

ξ =
ξLE√

3
; αLE =

ξ

ξLE
r† =

r†√
3

; (84a)

γ = 0; α = 2;χ =
5
2

=
β − γ

α
=

β

2
;β = 5; (84b)

λ = 25/2ρ† ; (84c)

and the substitution of Eqs. (84a) and (84c) into (82)
yields:

ρ(r) = ρ†f(ξ) ; (85a)

f(ξ) =
25/2

(1 + ξ2)5/2
; (85b)

according to Eq. (37).
An equivalent formulation can be obtained by

the combination of Eqs. (81) and (84). The result is:

ρ(r) =
3M

4π

(r†)2

[r2 + (r†)2]5/2
; (86)

which is known as the Plummer (1911) density pro-
file.

A2. Quasi static contraction in
presence of tidal potential

The scalar virial equations, Eqs. (12b), for as-
signed density profiles i.e. fixed αu, βu, γu, and Ξu,
u = i, j, depend on four parameters e.g., masses and
scaling radii, Mu and r†u. The further assumption of
spherical-symmetric matter distributions is only to
simplify calculations. Let a specified amount of en-
ergy, ∆E < 0, be instantaneously dissipated within
the inner subsystem, as:

(Ei)kin → (Ei)kin + ∆E ; (87)

and the system readjust to attain a new configura-
tion in accordance with Eqs. (12b) where, in general,
density profiles and scaling radii are changed, while
masses and the outer subsystem truncation radius
may be assumed fixed, or their variations specified.
More specifically, density profiles are steepened by
energy dissipation, and the system gets bounder i.e.
a larger (in absolute value) binding energy is at-
tained.

The further constraint of density profiles un-
affected by energy dissipation, implies the following
changes (u = i, j):

Mu → Mu + ∆Mu ; ∆Mu = 0 ; (88a)
Ξu → Ξu + ∆Ξu ; ∆Ξu = 0 ; (88b)
Ru → Ru + ∆Ru ; ∆Rj = 0 ; (88c)

r†u → r†u + ∆r†u ; ∆r†j = 0 ; (88d)

(Eu)kin → (Eu)kin + ∆Eu ;
∆Ei + ∆Ej = ∆E ; (88e)
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where the assumption that energy dissipation within
the inner subsystem has no effect on (i) masses,
Mu; (ii) scaled truncation radii, Ξu; density profiles,
(αu, βu, γu); (iii) truncation radius of the outer sub-
system, Rj ; implies a frozen outer subsystem. In gen-
eral, the changes, ∆Mu = ζmMu, ∆Ru = ζuRu, and
∆r†u = ζur†u, making m and Ξu conserved, should
be specified. The application of the scalar virial the-
orem, Eqs. (12), to the subsystems before and after
energy dissipation, yields:

Uuv(y†) + 2(Eu)kin = 0 ; (89a)

Uuv(y† + ∆y†) + 2[(Eu)kin + ∆Eu] = 0 ; (89b)
Uuv = (Euv)vir ; (89c)

where the fractional scaling radius, y† = r†j/r†i , has
been chosen as variable.

The combination of Eqs. (89a) and (89b)
yields:

∆(Euv)vir + 2∆Eu = 0 ; (90a)

∆(Euv)vir = Uuv(y† + ∆y†)− Uuv(y†) ; (90b)

and the combination of Eqs. (90a), by use of (88e)
produces:

∆(Eij)vir + ∆(Eji)vir + 2∆E = 0 ; (91)

which is a transcendental equation in ∆y† provided
the density profiles and the amount of dissipated en-
ergy, ∆E, are specified. In general, the changes,
∆Mu = ζmMu, ∆Ru = ζuRu, and ∆r†u = ζur†u,
which make m and Ξu conserved, should also be spec-
ified. Then the remaining parameters related to the
relaxed system, due to energy dissipation, may be
determined. In particular, ∆y† > 0 is expected to-
gether with m = const due to mass conservation in
each subsystem or mass variation of the kind con-
sidered, m = (Mj + ∆Mj)/(Mi + ∆Mi) = Mj/Mi.
Accordingly, the position of the system in the (Oyφ)
plane moves from the left to the right along the re-
lated isofractional mass curve (see e.g., Fig. 4).
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Originalni nauqni rad

Razmatraju se dvokomponentni sistemi
kao makrogasovi i sa tim u vezi jednaqina
staǌa se pixe koriste�i virijalnu teoremu
za podsisteme pod pretpostavkom o postojaǌu
homeoidalno izbrazdanih profila gustina.
Ura�ene su eksplicitne raqunice za referen-
tni sluqaj i za nekoliko astrofiziqki in-
teresantnih sluqajeva, i to sa i bez radi-
jusa zarubǉenosti. Pokazano je da pli�i
profili gustine dopuxtaju jednaqinu staǌa,
φ = φ(y, m) koju karakterixe (za zadate vred-
nosti frakcione mase, m = Mj/Mi) postojaǌe
dve ekstremne taqke, minimuma i maksimuma,
kako je pokazano u ranijem pokuxaju. Strmiji
profili gustine daju sliqnu jednaqinu staǌa,
xto implicira da je specijalna vrednost m u
vezi sa kritiqnom krivom gde se gore pomenute
ekstremne taqke svode na jednu horizontalnu
taqku krivine, a krive ispod kritiqne ne
pokazuju ekstremne taqke. Sliqnost izofrak-
cionih krivih masa van der Valsovim izoter-
malnim krivim sugerixe mogu�nost faznog

prelaza u zvonastoj oblasti (Oyφ) ravni, gde
je frakcioni zarubǉeni radijus du� odre-
�enog pravca dat kao y = Rj/Ri, a frak-
ciona virijalna potencijalna energija je φ =
(Eji)vir/(Eij)vir. Daǉe prouqavaǌe je posve�eno
raspodelama mase opisanih u radu Hernquist-
a (1990) koji daje profile gustine, za koje
mo�e da se koristi dodatna relacija da bi se
obradio uzorak od N = 16 eliptiqnih galak-
sija u (Oyφ) ravni. Qak i kada bi evolu-
cija eliptiqnih galaksija i haloa tamne ma-
terija u kojima se one nalaze, u svetlu ovog
modela, bila karakterisana jednakim frak-
cionim masama, m, i jednakim srazmernim
radijusom zarubǉenosti, ili koncentracije,
Ξu = Ru/r†u, u = i, j, ona i daǉe ne bi mogla
da bude posmatrana kao striktno homologna,
zbog razliqitih vrednosti frakcionog radi-
jusa zarubǉenosti, y, ili frakcionog radi-
jusa skaliraǌa, y† = r†j/r†i , zakǉuquju�i na os-
novu objekata iz uzorka.
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