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SUMMARY: Recently, we analyzed the role of mean-motion resonances in semi-
major axis mobility of asteroids, and established a functional relationship that
describes the dependence of the average time spent inside the resonance on the
strength of this resonance and the semi-major axis drift speed. Here we extend this
analyzis in two directions. First, we study the distribution of time delays inside the
resonance and found that it could be described by the modified Laplace asymmetric
distribution. Second, we analyze how the time spent inside the resonance depends
on orbital eccentricity, and propose a relation that allows taking this parameter into
account as well.
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1. INTRODUCTION

Gravitational and non-gravitational phenom-
ena influence main-belt asteroids. The most im-
portant gravitational mechanisms are orbital reso-
nances. The most important non-gravitational ef-
fects are the Yarkovsky and the Yarkovsky-O’Keefe-
Radzievskii-Paddack (YORP) forces.

The Main Belt is permeated with mean-
motion resonances (MMRs) and secular resonances.
The MMRs may cause either slow (e.g. Nesvorný
and Morbidelli 1998, Novaković et al. 2010) or fast
orbital changes (e.g. Morbidelli et al. 1995, Gladman
et al. 1997). These changes depend on the time that
an asteroid remains captured inside the resonance,
but also on the magnitude of the Yarkovsky effect.
In principle, larger asteroids spend longer time in the
resonance, allowing a greater diffusion in eccentricity
and inclination (Gallardo et al. 2011).

Yarkovsky effect is a radiation effect which
acts mainly on the semi-major axes of objects be-
tween about 0.1 m and 10 km in the Main Belt (Ru-

bincam 1995, Farinella et al. 1998, Vokrouhlický et
al. 2015). Unlike gravitational perturbations, non-
gravitational effects depend on a number of param-
eters, e.g. albedo, thermal characteristics, or ro-
tation state. Thus, as these parameters are often
not known, the models involving non-gravitational
effects usually fit statistical parameters of a large
sample of objects (e.g. Novaković 2010, Bottke et
al. 2015).

Some specific issues which could be explained
using the Yarkovsky effect are: the cosmic-ray ex-
posure ages of stony and iron meteorites, which are
much longer than the dynamical lifetimes of parti-
cles delivered from the asteroid belt (Farinella et al.
1998, Morbidelli and Gladman 1998); the overabun-
dance of decameter-sized near-Earth objects (Rubin-
cam 1995, 1998, Vokrouhlický and Farinella 1998);
the dynamical evolution of main-belt asteroid frag-
ments and their delivery to Mars and Earth-crossing
orbits (Farinella and Vokrouhlický 1999).

For a detailed understanding of the Yarkovsky
effect’s role in the dynamical evolution of aster-
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oids, different analyzes of the interaction among the
Yarkovsky-drifting orbits and MMRs should be per-
formed. Some of these analyzes have been conducted
and results have been presented in numerous papers
(see Vokrouhlický et al. 2015 and references therein).

A new line of research was presented recently
by Milić Žitnik and Novaković (2016), who estab-
lished functional relationship between the time spent
inside the resonance, the strength of this resonance
and the semi-major axis drift speed.

All these facts were our motivation for study-
ing the effect of different MMRs with Jupiter on
an asteroid’s semi-major axis mobility due to the
Yarkovsky induced drift. Here we present an ex-
tended analyzes, and new results on the interaction
of Yarkovsky force and MMRs. In particular, we
study distribution of time delays inside the resonance
as well as their dependence on orbital eccentricity.
This work is a natural continuation of the afore-
mentioned research by Milić Žitnik and Novaković
(2016).

2. METHODS

In this section we describe the methods used
to investigate interplay between the MMRs and the
Yarkovsky force. These methods were introduced in
Milić Žitnik and Novaković (2015, 2016) and will only
briefly be discussed here.

A set of numerical integrations of 66 000 test
particles were performed in order to examine the
semi-major axis drift delay inside the MMRs. For
this purpose a public domain integrator, ORBIT9,
was utilized (Milani and Nobili 1988). The orbital
motion of test particles was tracked between 40 and
120Myr, depending on the resonance’s strength.

The Yarkovsky effect was included in all nu-
merical simulations. The orbit of every test particle
was propagated assuming ten different values of da

dt :
from −4× 10−5 to −2.0× 10−3 AUMyr−1.

Numerical integrations of the test particles
were performed using two different dynamical mod-
els, depending on the heliocentric distance of the
resonance. The dynamical model that includes four
outer planets was used for resonances located more
than 2.5 AU from the Sun, while for those located
closer than 2.5 AU the dynamical model with seven
planets, from Venus to Neptune, was used.

In this study we analyzed eleven isolated
MMRs with Jupiter (the most massive planet in the
solar system) whose strengths cover a wide range of
magnitudes.

The particles were initially located as close as
possible to the resonance but outside the resonance.
The initial positions of test particles resembled a
shape of a given resonance. To measure the time
spent inside a resonance it was necessary to deter-
mine the moments of entering, t1, and exiting, t2,
from the resonance. The numerical method used in
calculation of these moments is described in Milić
Žitnik and Novaković (2016). That is, if ∆t and ∆a
are defined as ∆t = t2 − t1, and ∆a = a2 − a1,
where a1 and a2 are semi-major axes at times t1 and
t2, then the time interval dtr used in performed ana-

lyzes is defined as follows (Milić Žitnik and Novaković
2016):

dtr = ∆t− ∆a

(da
dt )

. (1)

Finally, to analyze the distribution of dtr (Eq.
1) we used the asymmetric Laplace statistical distri-
bution (-Dorić et al. 2007). The Laplace asymmetric
probability density function has two branches, left
and right, respectively, defined as:

g(x) =
(1− p)

l
× exp

(−|x− a|
l

)
, x ≤ a, (2a)

g(x) =
p

l
× exp

(−|x− a|
l

)
, x > a. (2b)

where a, the parameter of location, is the only value
of x for which g(x) has the global maximum value,
where l > 0 is the scaling parameter and 0 < p < 1 is
the shape parameter. Please see (Kotz et al. 2001)
for a review of the used of the Laplace asymmetric
distribution (Eqs. 2a and 2b).

3. RESULTS

In Section 3 we present the results we have
obtained by analyzing the distribution of time de-
lays inside the MMRs, and dependence of the time
spent inside the resonances on orbital eccentricity.
In these analyzis we used the data set of numerical
integrations produced by Milić Žitnik and Novaković
(2016).

3.1. Distribution of dtr for test objects

One of our most important results is on the
time the asteroids spend in MMRs. Test objects
spent longer time periods in stronger resonances with
smaller Yarkovsky drift than in weaker resonances
with greater Yarkovsky drift (Milić Žitnik and No-
vaković 2016). Weaker (narrower) resonances keep
objects inside for less time than stronger ones. So,
to study results of interaction between MMRs and
secular drift in the semi-major axis, we analyzed the
distribution of dtr times.

To this purpose, we produced histograms
showing the distributions of dtr in Fig. 1. There are
all histograms for the strongest resonance, the 9:4, as
a representative example. Distribution of dtr is very
similar for all resonances. The histograms suggest
that the distribution of dtr is always asymmetric,
skewed sometimes more to the left, sometimes more
to the right. In order to confirm this characteristic,
we calculated the third and the fourth standardized
moments, i.e. the skewness γ1 and the kurtosis γ2

(see Carruba et al. (2012) for similar application).
For almost all values of the Yarkovsky the drift speed
and for all MMRs, objects have positive skewness
value γ1 so the distribution of dtr has a tail on the
right side which is longer than that on the left side
(Table 1). Most of the objects have high and positive
kurtosis so that the distribution of dtr has a sharp
peak and long fat tails (Table 1).
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Table 1. Values of the third and the fourth standardized moments: γ1 (skewness) and γ2 (kurtosis) for 11
MMRs and for 10 values of the Yarkovsky drift speed.

9:4 8:3 13:6 15:7 11:4 17:8 10:3 16:7 17:7 18:7 17:6
γ1

0.18 0.49 -0.93 0.55 -8.43 0.57 1.70 1.72 2.60 0.67 4.79
1.95 1.96 3.24 2.17 3.84 2.10 2.90 -2.24 8.14 0.42 8.71
1.71 2.01 3.07 1.72 4.84 2.46 0.59 -2.79 0.74 0.33 1.82
3.39 2.39 2.53 1.70 4.11 3.74 0.75 8.08 0.42 0.49 -2.31
1.52 1.84 2.41 3.47 4.62 13.03 0.39 8.60 0.04 -0.21 -2.42
1.87 2.04 2.83 5.31 4.60 2.24 0.39 2.82 0.23 1.26 -2.82
2.06 2.14 2.55 2.00 6.12 11.58 0.68 0.79 0.30 -1.34 -2.67
2.16 1.86 3.22 1.46 7.59 2.09 0.51 1.15 0.23 0.67 -2.18
1.79 2.09 2.59 2.42 9.16 1.40 0.20 0.69 0.19 0.39 -1.77
1.94 2.17 3.97 2.69 7.70 13.07 0.19 0.43 0.34 -0.07 -1.82

γ2

3.66 3.02 4.51 12.73 135.95 3.97 12.07 11.21 11.56 7.44 29.10
8.76 7.50 17.70 13.56 25.95 23.35 27.58 24.60 98.94 4.30 104.08
6.80 9.06 19.28 9.36 35.01 22.84 7.75 13.58 2.97 4.29 16.04
24.17 11.67 14.89 10.81 27.09 42.11 10.08 114.28 2.23 6.52 12.79
5.65 7.37 12.46 35.92 32.75 240.41 8.77 119.21 3.10 28.38 13.14
7.08 8.73 15.08 49.97 30.69 16.58 6.96 18.66 2.58 13.81 13.63
9.06 9.09 12.66 11.94 50.10 193.13 7.49 7.08 3.35 8.96 11.96
10.04 7.50 17.71 11.23 79.71 14.37 9.74 5.55 3.36 9.26 11.08
7.60 9.27 15.57 22.86 110.56 6.95 6.76 4.65 3.57 5.51 8.29
8.99 10.71 28.89 21.96 92.31 247.71 6.74 3.71 4.07 4.57 8.62

Most of the objects crossed the resonance
when dtr → ±0. Moreover, histograms of dtr
reveal that the dispersion of dtr is smaller for
faster Yarkovsky drift speeds and larger for slower
Yarkovsky drift speeds. Also, dtr is larger for
stronger resonances and smaller for weaker reso-
nances. In histograms it can be seen that the objects
spent the longest time period in the strongest reso-
nance with the smallest Yarkovsky drift speed, and
the shortest time period in the weakest resonance
with the largest Yarkovsky drift speed. That was
shown in Fig. 1 for our strongest resonance. This
rule is valid for all 11 MMRs and all tested Yarkovsky
drift speeds.

To see whether two samples have the same dis-
tribution, we took into account 34 histograms of dis-
tribution of dtr (≈ 31% of samples of our histograms)
from different resonances, and compared 26 pairs of
the histograms. The compared histograms have the
same partition on the x-axis (dtr moments) in the
same MMR, but different values for the Yarkovsky
drift speed. We applied the Kolmogorov-Smirnov
test for two samples to test the null hypothesis H0:
P0 = P1, with two values for the level of significance
α=0.05 and α=0.01 (see Carruba et al. (2013) for
similar application). In the case of α=0.05 we found
that the null hypothesis H0 is accepted for 20 pairs of
the histograms, while for α=0.01 H0 is accepted for
21 pairs. These results suggest that the data shown
in the histograms belong to the same (or very simi-
lar) distributions.

3.1.1. Laplace asymmetric distribution

These histograms motivated a further analy-
sis of distribution of dtr for the test objects. From
the presented histograms it is visible that this distri-
bution of objects has asymmetric exponential char-
acter on both sides with respect to the maximum.
After many try-outs whose statistical distribution
represents data the best, we found a few poten-
tially good candidates. For example, Maxwell’s and
Cauchy’s four-parameter distribution were almost
good enough for the four strongest resonances (not
for all values of the Yarkovsky drift speed), but not
good for others (the errors of parameters of distribu-
tions were too high). As the best solution we adopted
the asymmetric Laplace statistical distribution for all
resonances and for all Yarkovsky drift speeds.

The Laplace asymmetric probability density
function has two quite distinguishable branches, and
was not therefore fully appropriate to describe the
distribution of dtr in its original form. Because of
that, it was necessary to divide the Laplace density
function into two parts with respect to the density
function maximum. Instead of two parameters (p, l),
four parameters were taken into account, for the left
(pl, ll) and the right (pr, lr) branch, respectively:

g(x) =
(1− pl)

ll
× exp

(−|x− a|
ll

)
, x ≤ a, (3a)

g(x) =
pr

lr
× exp

(−|x− a|
lr

)
, x > a. (3b)
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This allowed for the best approximation of dis-
tribution of dtr with very small errors of (pl, ll, pr, lr)
in almost all cases. Fig. 2 shows the modified
Laplace asymmetric density function (Eqs. 3a and
3b) for the 9:4 resonance, as a representative exam-
ple.

To confirm that the selected distribution is re-
ally appropriate for our data, we performed Pear-
son’s chi square test with level of significance α =
0.05. Our null hypothesis H0 that is being tested is
”Data have modified asymmetrical Laplace distribu-
tion (Eqs. 3a and 3b)”. The obtained results show
that this distribution is fully appropriate in about

80% of the cases. By analyzing the remaining 20%,
we found that practically in all these cases test failed
because of a very long tail of data caused by a large
single values of dtr. As such values are subjects of
significant uncertainties, we subtracted them from
the data and repeated Pearson’s test. After this
modification, all our datasets passed the test. Thus,
based on this, we concluded that the adopted mod-
ified Laplace asymmetric distribution is appropriate
to our data.

The analysis of parameters of this modi-
fied Laplace asymmetric probability density function
(Eqs. 3a and 3b) gave the following eight most im-
portant results.
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Fig. 1. Histograms of tests objects as a function of time delay dtr in the strongest examined amongst 11
MMRs, namely the 9:4 resonance.
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Fig. 2. The modified Laplace asymmetric distribution of tests objects in the resonance 9:4. Time intervals
of dtr are obviously greater for weaker Yarkovsky values, and vice versa.
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Fig. 3. a) Dependence between 〈pl〉, 〈pr〉 and res-
onance’s strength, b) Dependence between pl, pr and
the Yarkovsky drift speed for the 9:4 resonance.

The arithmetic mean value of the parameter
〈pl〉, which was calculated for all resonances and
for all Yarkovsky values, has the highest value for
the weakest resonance, and the lowest value for the
strongest resonance (Fig. 3.a). The value of 〈pl〉
parameter decreases with the strengthening of the
resonance.

Contrary to the parameter 〈pl〉, the arithmetic
mean value of the parameter 〈pr〉, which was cal-
culated in all cases, has the highest value for the
strongest resonance while the lowest value is found
for the weakest resonance (Fig. 3.a). The value of
〈pr〉 decreases with the weakening of the resonance.
Also, values of pl increase with the increase of the
Yarkovsky speed, while values of pr increase with
the decrease of the Yarkovsky drift speed, in all res-
onances. In Fig. 3.b these results are presented for
the 9:4 resonance. This is valid for all resonances.
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Fig. 4. a) Dependence between 〈ll〉, 〈lr〉 and res-
onance’s strength, b) Dependence between ll, lr and
the Yarkovsky non-gravitational force for the 9:4 res-
onance.

The arithmetic mean values of parameters 〈ll〉
and 〈lr〉, which were calculated for all cases, decrease
with the weakening of the resonance (Fig. 4.a).
There is an interesting results about the connection
between ll, lr and the Yarkovsky speed. Their val-
ues decrease from the slowest Yarkovsky speed to
the fastest Yarkovsky speed in all resonances. As
an example, Fig. 4.b shows these results for the 9:4
resonance but the same trend is observed for all res-
onances.

There evidently exists functional connec-
tion between the parameters {ll, lr, pl, pr} and the
Yarkovsky drift speed, and the strength of reso-
nances. Functional connection could be described
by the following equation:

log10({ll, lr, pl, pr}) = a log10(SR) +

+ b log10

(
da
dt

)
+ c. (4)

The fitting parameters (a, b, c) could be found
numerically applying the least-squares method in fit-
ting the data with the Eq. (4). The fitting pa-
rameters that describe best the relation between
{ll, lr, pl, pr}, SR and da

dt are presented in Table 2.

Table 2. Values of fitting parameters (a, b, c) along
with their standard errors.

a± σa b± σb c± σc

ll 0.397±0.014 -0.919±0.055 -0.980±0.205
lr 0.434±0.019 -0.928±0.077 -0.619±0.284
pl -0.018±0.003 0.069±0.012 0.035±0.044
pr 0.426±0.024 -0.926±0.094 -1.206±0.344

These fitting parameters (a, b, c) of the modi-
fied Laplace distribution may be used for determina-
tion of dtr for certain number of objects with known
Yarkovsky drift speed in the known resonance, that

may be very useful for different further investigations
on asteroids’ motions over MMRs.

3.2. Relation between 〈dtr〉, SR, da
dt and e

A relation between 〈dtr〉, SR, da
dt was estab-

lished in Milić Žitnik and Novaković (2016). For
9 (out of 10) values of da

dt analyzed there, it was
revealed that 〈dtr〉 increases when SR is increas-
ing (the smallest Yarkovsky value had different be-
haviour). A similar linear dependence is found be-
tween 〈dtr〉 and da

dt but with opposite trend, i.e. 〈dtr〉
decreases while da

dt is increasing.
In particular, it was shown by Milić Žitnik and

Novaković (2016) that the following equation holds:

〈dtr〉 = c1 (SR)β

(
da
dt

)γ

, (5)

with c1 being a coefficient and β and γ two unknown
exponents. In order to estimate the strength of the
resonances, SR, we applied the numerical method
proposed by Gallardo (2006). The unknown param-
eters c1, β and γ in Eq. (5) were found by Milić
Žitnik and Novaković (2016) numerically applying
the least-squares method of fitting data using the
equation:

log10(〈dtr〉) = β log10(SR)+γ log10

(
da
dt

)
+c2. (6)

In that way we found that the fitting param-
eters which describe the best relation between 〈dtr〉,
SR, and da

dt are: β = 0.44 ± 0.03, γ = −1.09 ± 0.20
and c2 = 4.35 ± 0.66 for e ∼ 0.1. The results that
exclude the five weakest resonances were obtained:
β = 0.47 ± 0.04, γ = −0.97 ± 0.15, c2 = 5.11 ± 0.54
for e ∼ 0.1.

The Eq. (6) is valid only for eccentricity of
about 0.1 for which SR was estimated. It is well-
known that SR depends on eccentricity (Malhotra
1994, Gallardo 2006, Lykawka and Mukai 2007). So,
I calculated SR for different values of eccentricity
0.025 ≤ e ≤ 0.4 with step of 0.025 (0.4 is the upper
value of eccentricity for most of the asteroids). Af-
ter that, I calculated unknown fitting parameters for
these new values of e and SR. The values of β are
given in Table 3 0.025 ≤ e ≤ 0.4 because β defines
the relation between SR and e. It is clear that β
depends on eccentricity linearly, β = ae + b so that
β increases with the increase of values of e.

The parameters a and b could be found by the
least-squares method of fitting the data given in Ta-
ble 3 as shown in Fig. 5. We found their values to
be: a = 2.06 ± 0.02 and b = 0.24 ± 0.01 derived by
using all resonances. The parameter γ has the same
value for all eccentricity (Table 3) because it depends
only on the Yarkovsky drift speed. Values of c2 de-
pend on eccentricity linearly except for e = 0.025, c2
increases with e.
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Table 3.Values of β, γ, c2 for 0.025 ≤ e ≤ 0.4 with
their standards errors.

e β ± σβ γ ± σγ c2 ± σc2

0.025 0.327±0.024 -1.092±0.207 4.460±0.680
0.05 0.348±0.025 -1.092±0.207 4.325±0.675
0.075 0.392±0.028 -1.092±0.204 4.332±0.665
0.1 0.441±0.030 -1.092±0.201 4.347±0.656

0.125 0.494±0.034 -1.092±0.199 4.374±0.649
0.150 0.546±0.037 -1.092±0.197 4.399±0.645
0.175 0.598±0.040 -1.092±0.196 4.418±0.642
0.200 0.650±0.043 -1.092±0.196 4.432±0.641
0.225 0.702±0.047 -1.092±0.196 4.440±0.641
0.250 0.754±0.050 -1.092±0.196 4.445±0.643
0.275 0.805±0.054 -1.092±0.197 4.447±0.646
0.300 0.858±0.058 -1.092±0.198 4.450±0.649
0.325 0.911±0.062 -1.092±0.200 4.455±0.654
0.350 0.966±0.067 -1.092±0.201 4.464±0.659
0.375 1.023±0.071 -1.092±0.202 4.482±0.663
0.400 1.084±0.076 -1.092±0.203 4.511±0.667
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Fig. 5. Dependence between e and β for resonance’s
strength calculated for 0.025 ≤ e ≤ 0.4.

4. CONCLUSIONS AND IMPLICATIONS

This paper presents the functional relation
between the average time spent inside a resonance
〈dtr〉, the strength of a resonance SR, eccentric-
ity e, the semi-major axis drift speed da

dt , with cor-
rected and generalized Eq. (6) that is valid for
0.025 ≤ e ≤ 0.4:

log10(〈dtr〉) = (2.06e + 0.24) log10(SR) −
1.09 log10(

da
dt ) + c2.

Then, it would be easy to calculate the aver-
age time that an object spent inside an MMR, 〈dtr〉,
with given the resonance’s strength, the Yarkovsky
drift speed, and an object’s eccentricity.

The modified Laplace statistical distribution
could be used for generating dtr for certain number
of objects with a particular Yarkovsky drift speed
in MMRs. These results may be easily implemented
in different Monte-Carlo methods aiming to simulate

migration of asteroids across the MMRs in the Main
Belt.

Work on the remaining topics will continue
and will include other MMRs as well as a wider range
of Yarkovsky drift speeds.
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INTERAKCIJA IZME�U SILE JARKOVSKOG I REZONANCI
U SREDǋEM KRETAǋU: NEKE SPECIFIQNE OSOBINE
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Nedavno smo analizirali ulogu rezo-
nanci u sredǌem kretaǌu u promeni ve-
like poluose asteroida i utvrdili smo
funkcionalnu vezu koja opisuje zavisnost
proseqnog vremena provedenog u rezonanci i
snage ove rezonance i brzine promene ve-
like poluose. Ovde smo proxirili ovu ana-
lizu u dva pravca. Prvo, prouqavali smo

raspodelu vremena kaxǌeǌa u rezonanci i
pronaxli da bi mogla da se opixe modifiko-
vanom Laplasovom asimetriqnom raspodelom.
Drugo, analizirali smo kako vreme prove-
deno u rezonanci zavisi od orbitalnog ekscen-
triciteta i predlo�ili relaciju koja uzima
ovaj parametar u obzir.
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