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SUMMARY: Exomoons are predicted to produce transit timing variations (TTVs) upon their host
planet. Unfortunately, so are many other astrophysical phenomena - most notably other planets in
the system. In this work, an argument of reductio ad absurdum is invoked, by deriving the transit
timing effects that are impossible for a single exomoon to produce. Our work derives three key analytic
tests. First, one may exploit the fact that a TTV signal from an exomoon should be accompanied
by transit duration variations (TDVs), and that one can derive a TDV floor as a minimum expected
level of variability. Cases for which the TDV upper limit is below this floor can thus be killed as
exomoon candidates. Second, formulae are provided for estimating whether moons are expected to be
“killable” when no TDVs presently exist, thus enabling the community to estimate the value of deriving
TDVs beforehand. Third, a TTV ceiling is derived, above which exomoons should never be able to
produce TTV amplitudes. These tools are applied to a catalog of TTVs and TDVs for two and half
thousand Kepler Objects of Interest, revealing over two hundred cases that cannot be due to a moon
- remarkably then a large fraction of the known TTV amplitudes are consistent with being caused by
a moon. These tests are also applied to the exomoon candidate Kepler-1625b i, which comfortably
passes the criteria. These simple analytic results should provide a means of rapidly rejecting putative
exomoons and streamlining the search for satellites.

Key words. Planets and satellites: detection – Planets and satellites: individual: Kepler-1625b –
Methods: analytical

1. INTRODUCTION

Transit timing variations (TTVs) have long been
recognized as a powerful tool for the detection of exo-
planets (Dobrovolskis and Borucki 1996a,b, Miralda-
Escudé 2002, Schneider 2003, 2004, Holman and Mur-
ray 2005, Agol et al. 2005), as well as exomoons (Sar-
toretti and Schneider 1999, Szabó et al. 2006, Simon
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et al. 2007, Kipping 2009a,b). Early searches for
TTVs, largely focussing on hot-Jupiters, were char-
acterized by either null detections (Steffen and Agol
2005, Miller-Ricci et al. 2008a,b, Rabus et al. 2009,
Hrudková et al. 2010) or signals that later turned out
to be spurious (Dı́az et al. 2008, Ribas et al. 2009,
Maciejewski et al. 2010) - so much so that one could
be forgiven for questioning the value of the TTV en-
terprise at the time.

This situation radically changed though with the
launch of Kepler (Holman et al. 2010, Ballard et al.
2011, Nesvorný et al. 2013, Holczer et al. 2016, Had-
den and Lithwick 2017) - thanks to its detections of
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longer period planets and continuous, long-baseline
photometric observations. There are now hundreds
of known TTV systems, and this embarrassment of
riches has actually presented a problem. Specifically,
TTVs due to planet-planet interactions are so com-
mon that the search for exomoons is greatly frus-
trated by this enormous background signal. In this
era of abundant TTVs detections, there is a need for
tools that can quickly classify what TTVs can/cannot
be - an era of TTV triage.

In recent years, much of the theoretical work on
TTVs has focussed on the inverse problem (Nesvorný
and Morbidelli 2008, Nesvorný and Beaugé 2010,
Lithwick et al. 2012, Nesvorný and Vokrouhlický
2014, Deck and Agol 2016). Yet these efforts broadly
assume a specific model already - namely that the
observed TTVs are caused by another planet. A
Bayesian would describe this as parameter estima-
tion. But parameter estimation is only one side of the
coin when it comes to inference, with the other be-
ing model selection. Certainly, there are many cases
where the model can be safely assumed to be that
of planet-planet interactions, for example because of
the known existence of near mean motion resonance
transiting planets (Wu and Lithwick 2013, Hadden
and Lithwick 2014, 2017). But it would be folly to
assume that all TTVs will be universally caused by
planet-planet interactions - other models should be
considered too. And this is of course highly salient for
exomoons, which represent a distinct origin of TTVs.

Model selection for TTVs will be particularly chal-
lenging when the TTVs are nearly sinusoidal, which is
the form taken by circular orbit exomoons* (Kipping
2009a). This is because planet-planet interactions
are perfectly capable of appearing as sinusoidal, too,
for example due to the circulating line of conjunc-
tions (Lithwick et al. 2012, Nesvorný and Vokrouh-
lický 2014, Deck and Agol 2016). Thus, the waveform
shape of the TTVs will not necessarily be useful in
distinguishing these two hypotheses. In this work, us-
ing just the amplitude of the observed transit timing
effects, it is investigated whether this has any ability
to test the moon hypothesis. In particular, almost
the opposite problem is considered through an ar-
gument reductio ad absurdum - what kind of transit
timing effects can one classify as being impossible for
an exomoon?

2. KILLING MOONS BELOW A TDV
FLOOR

2.1. Conceptual explanation

Before diving into the mathematical details of the
effect described in this section, it is instructive to first
offer a simple intuitive explanation to guide what fol-
lows. The TTV amplitude of an exomoon is propor-
tional to the mass of the satellite, MS , multiplied

*We highlight that this can be somewhat modified for very
large moons that distort the transit profile (Simon et al. 2007),
but observational constraints on the exomoon population of
Kepler planets shows that this would be a rare occurrence
(Teachey et al. 2018).

by its semi-major axis, aS (Sartoretti and Schneider
1999). Consider that one has detected a TTV sig-
nal for an exoplanet - a rather typical situation given
that there are now hundreds of such planets (Holczer
et al. 2016). The task is now to determine if this data
in hand is consistent with an exomoon hypothesis, or
not.

Consider that there exists an additional piece of
information - measurements of the TDVs. Exomoons
are predicted to produce TDVs with the same peri-
odicity as the TTV signal, with the dominant TDV

component being proportional to MSa
−1/2
S (Kipping

2009a,b). There are far fewer examples of known
TDV systems (see Szabó et al. 2012 and Nesvorný
et al. 2013 for rare examples) and so let’s consider
the more typical case that a detected TTV signal
does not appear to be accompanied by a TDV signal.

This lack of a clear TDV signal can be translated
into a TDV amplitude upper limit, and that limit in
fact places some interesting constraints on our prob-
lem. For example, a moon in a compact orbit around
its planet should produce quite large TDVs, since

the amplitude is proportional to a
−1/2
S . Thus, one

should expect that the lack of a TDV detection ex-
cludes these inner orbits and places some limit on
the minimum orbital radius of the hypothesized ex-
omoon. If the TDV upper limit is sufficiently tight,
this minimum orbital radius may in fact exceed the
Hill sphere� - this would be an impossible moon.

Thus, in what follows, the extent to which an ex-
oplanet with a detected TTV amplitude and a TDV
upper limit can be used to deduce an minimum al-
lowed exomoon semi-major axis is investigated. If
this semi-major axis exceeds the Hill radius, then
such cases could thus be dismissed as exomoon can-
didates, despite the fact only a TTV signal was ever
recovered.

2.2. Mathematical details

Let us begin by considering the ratio of the TDV
amplitude to the TTV amplitude as caused by an
exomoon, denoted by the symbol η. This was first
derived in Kipping (2009a), who considered only
velocity-induced TDVs (TDV-V). The result is that
η = nST , where nS is the mean motion of the moon
(= 2π/PS) and T is the planet’s transit duration.
The power of this equation is that if both effects
are detected, the orbital period of the moon can
be uniquely inferred, something usually not possi-
ble with exomoons due to aliasing effects (Kipping
2009a).

However, η = nST is only true in the limiting
case of i) no transit impact parameter induced TDVs
(TDV-TIP), caused by planets bobbing up and down
against the planet’s orbital plane (Kipping 2009b) ii)
zero eccentricity for the satellite. Relaxing both of
these assumptions, the ratio of the root mean square

�One might question whether quasi-moons outside of the
Hill sphere defy this definition, but in this work we consider
that quasi-moon are exactly that - “quasi-moons” and not
“moons”.
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(RMS) amplitudes is shown in Kipping (2011) to be
given by (see their Eq. 6.100), which is written here
as:

η = TnS
1

(1− e2S)3/2

√
ΦTDV−V

ΦTTV︸ ︷︷ ︸
≡ζ

+ε, (1)

where ΦTDV−V and ΦTTV are scalars controlling the
strength of the TDV-V and TTV effects respectively
(which depend on the three-dimensional geometry of
the orbits), ε is a parameter introduced here to ab-
sorb the TDV-TIP component of the η parameter (see
Eq. 6.100 of Kipping 2011 for full form).

Given that the above is a generalization to ec-
centric satellite orbits, it is not surprising that the ζ
term defined in Eq. (1) tends to unity in the limit of
eS → 0, which is evident from the behaviour of the
(1− e2S)−3/2 term, as well as the fact that:

lim
eS→0

ΦTTV = lim
eS→0

ΦTDV−V = π(1− cos2 iS sin2$S),

(2)

as shown in Eqs. (6.47) and (6.67) of Kipping (2011).
Although ζ tends towards unity for circular moons,
one might wonder whether it is typically greater than
unity (i.e. an enhancement factor to η) or less than
unity (i.e. an attenuation factor) for eS > 0. Since
the functional forms of the ΦTTV and ΦTDV−V are
rather protracted, it is not straight-forward to ana-
lytically investigate this behaviour. Instead, a large
number (107) of random examples of 0 ≤ eS < 1,
0 ≤ ωS < 2π, 0 ≤ $S < 2π and 0 ≤ iS < 2π
were generated, with a corresponding calculation of
ζ. From this, it is found that ζ ≥ 1 in every single nu-
merical test, showing that it can only ever serve as an
enhancement factor. Generally, one does not expect
moons to possess large eccentricities due to tidal cir-
cularization, but the following argument holds even
in such a case.

Next, consider the behaviour of ε, which relates
to the TDV-TIP effect. The TDV-TIP effect is off-
set in phase from the TDV-V effet by ±π/2 radians
(depending on whether the moon is prograde or ret-
rograde; see Kipping 2009b). For this reason, it can
never destructively interfere with the TDV-V effect to
attenuate the signal. Rather, whatever the amplitude
of the TDV-TIP effect, and whether it be prograde
or retrograde, it can only act to increase the overall
TDV amplitude. Thus, ε > 0 in all cases. Therefore,
like the ζ term, ε can only act as an enhancement
factor to η. Generally, the TDV-TIP effect is small
compared to the TDV-V effect (Kipping 2009b), but
this is not actually a requisite in the following argu-
ment. To summarize the results so far, it has been
shown that:

η =
δTDV

δTTV
= ζTnS + ε, (3)

where δTTV and δTDV are TTV and TDV RMS am-
plitudes (respectively), T is the transit duration, nS
is the satellite’s mean motion, and ζ and ε are scalars
such that ζ ≥ 1 and ε > 0.

With these points established, one may now con-
sider how η can be used to identify impossible moons.
Let us replace PS with PP using Eq. (12) of Kip-

ping (2009a), which establishes that PS ' PP
√
f3/3,

yielding:

δTDV

δTTV
= ζ

(
2π
√

3T

PP f3/2

)
+ ε, (4)

where f is the semi-major axis of the moon relative
to the Hill radius of the planet (and thus one expects
f < 1). Consider that one has an upper limit on
δTDV given by δTDV,max, such that δTDV ≤ δTDV,max.
Substituting this into our η relation gives:

δTDV,max

δTTV
≥ ζ

(
2π
√

3T

PP f3/2

)
+ ε. (5)

Since the left hand side (LHS) of the equation is al-
ways greater than the right hand side (RHS), then
the inequality will also be true in the case of ε → 0
and ζ → 1, since these limits represent the smallest
allowed values for these terms. Accordingly, one may
write - without any loss of generality - that:

δTDV,max

δTTV
≥ 2π

√
3T

PP f3/2
. (6)

In the above, essentially all terms are observable un-
der the stated assumptions of the problem - except
for f . One may thus rearrange to make f the subject:

f3/2 ≥

(
2π
√

3T

PP

)(
δTTV

δTDV,max

)
. (7)

Finally, one can see that the above represents a
lower limit on f , denoted as fmin, and given by:

fmin =
(2π
√

3T

PP

)2/3( δTTV

δTDV,max

)2/3
. (8)

Fig. 1 shows some example calculations of fmin

for an ensemble of KOIs (Kepler Objects of Interest)
with available TDVs (taken from Holczer et al. 2016),
with the data methods described later in Section 5.

Since a moon should always have f < 1 (Domin-
gos et al. 2006), one can write a simple criterion that
a real exomoon should satisfy:

(2π
√

3T

PP

)2/3( δTTV

δTDV,max

)2/3
< 1, (9)
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or more succinctly, one can define a “TDV floor” cri-
terion is:

δTDV,max > 2π
√

3

(
TδTTV

PP

)
. (10)

To illustrate this, consider the case where the
TDV limits are very noisy, such that δTDV,max is
poorly constrained, with a very large upper limit.
In such a case, the criterion is satisfied. This does
not prove the solution is an exomoon, but it means
that the current observational constraints are at least
consistent with the said hypothesis. Now imagine ob-
servers obtaining ever more precise TDVs, yet still
no significant detection ever emerges, thus gradually
lowering δTDV,max. Eventually, the criterion will fail
and at that point one can confidently assert that the
observations are inconsistent with being caused by a
single large exomoon - an impossible moon.

3. THE KILLING REGIME

If TDV measurements are expected to be very
noisy or too few in number, one might be able to
immediately conclude that it’s not even worth the
effort of attempting to derive TDVs to test the cri-
terion of Eq. (10). The fundamental noise limit itself
will not be sensitive enough to infer an impossible
moon. This is certainly a worthwhile point to con-
sider because TDVs can be computationally expen-
sive to derive. In what follows then, the expected
upper limit on the TDV amplitude is derived under
some simplifying assumptions.

Consider a sequence of N homoscedastic TDVs
with normally distributed noise of standard deviation
∆TDV. Generally, moons are expected to be near cir-
cular, producing sinusoidal TDVs Kipping (2009a).
It is here assumed that the TDVs are dominated by
a single component to simplify the analysis, which
will typically be the TDV-V effect (except for grazing
transiting planets or highly inclined moons; Kipping
2009b). Accordingly, the model being regressed to
the data is:

TDV(E) = ATDV sin(nE + φ), (11)

where E is the epoch number, φ is a phase term and n
is the TDV frequency. The killing criterion described
in Section 2 is for the case where a strong TTV has
already been detected. If the signal is due to an exo-
moon, then the TDVs will have the same periodicity
as the TTVs, and that period is presumably well-
constrained thanks to the TTV detection. Further,
the phase is also known, since TDV-Vs lag TTVs by
π/2 radians (Kipping 2009a). Accordingly, the only
free parameter is the amplitude, which is closely re-
lated to the RMS amplitude via ATDV =

√
2δTDV.

Since the data are assumed to be normally dis-
tributed, and the problem is linear with respect to
the one unknown parameter, then one may employ
the linear least squares regression theory to write that

the parameter covariance matrix (a one-by-one ma-
trix in this case) will be given by:

Σ = ∆2
TDV(XTX)−1, (12)

where the homoscedasticity of the problem has been
exploited, and X is given by:

X =


sin(nE1 + φ)
sin(nE2 + φ)

...
sin(nEN + φ)

 . (13)

Evaluating, one may show that:

Σ =
∆2

TDV∑N
i=1 sin2(nEi + φ)

, (14)

and thus the error on ATDV will be:

σATDV =
∆TDV√∑N

i=1 sin2(nEi + φ)
. (15)

Sampling of the TDV curve is random, there is no
preference for any particular phase to be observed.
This means that Σ will not always return the same
covariance matrix even for the same number of points
with the same uncertainty - the term is probabilistic.
It is therefore necessary to estimate the expectation
value of Σ accounting for this feature.

One can write that sin2(nEi + φ) → sin2(xi),
where xi is a uniform random variate between 0 and
2π. The probability distribution of sin2 xi is now well-
posed, and described by the arc-sine distribution such
that:

Pr(yi = sin2 xi) dyi =
1

π
√
yi
√

1− yi
dyi. (16)

The expectation value of the TDV uncertainty
now becomes:

E[σATDV
]

∆TDV
= E

[ 1√∑N
i=1 yi

]
. (17)

In the case of N � 1, the expectation value of the
RHS becomes 2/

√
N , such that:

lim
N�1

E[σATDV
] =

2∆TDV√
N

,

lim
N�1

E[σδTDV
] =

√
2∆TDV√
N

. (18)

The upper limit on the TDV amplitude can be
expressed as some factor of this noise estimate, with
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Fig. 1: Best-fitting TTV amplitude from a LS periodogram applied to the outlier-cleaned Holczer et al. (2016) TTV

catalog, as a function of planetary period. Point opacity equals the ∆BIC/10 score of the fits. The color coding

shows the minimum allowed exomoon semi-major axis (given by Eq. 8), assuming that the TTVs are caused by a

single satellite and conditioned upon the fact no TDVs are observed. 40 KOIs are identified that require f > 1 and

can thus be killed as exomoon candidates.

a typical choice being 3. Accordingly, it is estimated
that a null TDV signal will have an upper limit of :

δTDV,max ' 3× ∆TTV√
2N

, (19)

where the replacement ∆TDV ' 2∆TTV has also been
used - i.e. the duration error is approximately twice
the timing error (Carter et al. 2008). This replace-
ment is necessary since the assumption throughout
is that the TDVs have not yet been derived and one
is deciding as to whether it’s worth inferring them.
Combining this with our earlier Eq. (10) yields the
following requirement for an physical exomoon - as-
suming a TTV signal has been detected and a TDV
upper limit:

(
δTTV√

2∆TTV/
√
N

)
<

(√
3

4π

)(
PP
T

)
. (20)

Although the above is more accurate, it is useful to
convert it into a more intuitive form by replacing the
denominator on the LHS with σδTTV

via analogy to
Eq. (18). This is somewhat inaccurate because the
TTV fit was not a one-parameter fit, and so the real

uncertainty may be greater than this due to param-
eter covariances. Accordingly, the above form is rec-
ommended but for the sake of guiding intuition one
may write that:

(
δTTV

σδTTV

)
<

(√
3

4π

)(
PP
T

)
. (21)

With the derivation complete, let us take a step
back and interpret what has actually been derived.
Recall that the inequality imposed is the condition
for a plausible moon stemming from Eq. (10). How
should one interpret the above? Note that the LHS
of Eq. (21) now represents the TTV signal-to-noise
ratio. Therefore, if you have TTV detection with a
signal-to-noise of > PP /(7T ), then one should expect
that derived TDVs will be capable of killing the exo-
moon hypothesis (assuming they don’t see anything).
In such cases, if the moon hypothesis is considered
viable, it would be instructive to derive TDVs then,
since their absence would falsify the moon hypothe-
sis.

What if Eq. (21) is not satisfied? In such case,
TDVs will be less valueable when it comes to seeking
exomoons, and thus might be lower priority objects -
but even here TDVs will still have some utility. No-
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tably, although one cannot guarantee that the TDVs
will be capable of excluding the moon hypothesis,
they will still place important constraints. For exam-
ple, they will still place a minimum constrain on f via
Eq. (8) - albeit a minimum f which lies within the Hill
sphere. This is illustrated in Fig. 2 for example (with
more specific details about the data provided later in
Section 5). This f constraint may still be sufficient to
place tension on the moon hypothesis, since only ret-
rograde moons are thought to be dynamically stable
beyond f > 0.5 for example (Domingos et al. 2006).
Alternatively, they may actually lead to a TDV de-
tection, thus lending support to the moon hypothesis.

4. THE TTV CEILING

In the previous section, the focus was on the ra-
tio of the TTV amplitude to the upper limit for the
TDVs. In some cases, TDV upper limits are not
presently available and so it is useful to consider if
there is some maximum to how strong the TTV effect
of an exomoon can be, in an absolute sense - a TTV
ceiling. Specifically, moons cannot generate TTVs of
arbitrarily large amplitude and so TTVs above this
ceiling can be immediately flagged as unrealistic to
be caused by a moon.

The TTV amplitude of an exomoon was first de-
rived in Sartoretti and Schneider (1999) for the case
of circular, coplanar orbits. This calculation was gen-
eralized to arbitrary orbits in Kipping (2009a), who
found that the RMS amplitude is given by:

δTTV =

(
1

2π

)(
aSMSPP
aPMP

)(
(1− eS)2

√
1− e2P

1 + eP sinωP

)

×

(√
ΦTTV

2π

)
. (22)

It is first highlighted that the planetary eccentric-
ity terms can be replaced with stellar density observ-
ables via the photoeccentric effect (Dawson and John-
son 2012, Kipping et al. 2012), such that:

Ψ1/3 =
1 + eP sinωP√

1− e2P
=

(
ρ?,obs
ρ?

)1/3

, (23)

where ρ? is the mean density of the host star and
ρ?,obs is the value inferred from a circular orbit fit
to the transit light curve. Substituting this into the
TTV equation gives:

δTTV =

(
1

2π

)(
aSMSPP
aPMP

)(
(1− eS)2

Ψ1/3

)(√
ΦTTV

2π

)
.

(24)

Next, let us use substitute aS = fRHill, where RHill ≡
aP

3
√
MP /(3M?), to give:

δTTV =

(
1

2π

)(
fMSPP
MP

)(
MP

3M?

)1/3(
(1− eS)2

Ψ1/3

)

×

(√
ΦTTV

2π

)
. (25)

Let’s now proceed to maximize the RHS in order to
derive a ceiling for the TTV amplitude. By definition,
a moon must satisfy MS ≤MP and using this in the
above yields the inequality:

δTTV ≤ f

(
Ψ−1/3

nP

)(
q

3

)1/3(
(1− eS)2

√
ΦTTV

2π

)
︸ ︷︷ ︸

≡β

,

(26)

where q ≡ (MP /M?) and a new term, β, is defined. It
is noted that one could also compute the above with
some smaller choice of MS besides from the binary
limit assumed here, such as one based on a system age
plus tidal migration (Barnes and O’Brien 2002). In
what follows though, it is preferred to keep the limit
as broad as possible to avoid erroneously removing
massive moons with unanticipated origins/evolution.

The eccentricity of the satellite is unknown and
resides somewhere in the range 0 ≤ eS < 1 for a
stable satellite. Consider the limiting case of eS → 0,
where Kipping (2011) shows (Eq. 6.47) that:

lim
eS→0

ΦTTV = π(1− cos2 iS sin2$S). (27)

The cosine and sine squared terms must always be in
the range of zero to unity, and thus:

0 ≤
(

lim
eS→0

ΦTTV

)
≤ π, (28)

which means that:

0 ≤ lim
eS→0

β ≤ 1√
2
. (29)

Thus, in the limit of circular moons, this term can
only ever be smaller than 1/

√
2. If one wishes to

maximize the RHS of Eq. (26) then, one may simply
set this combined term to that value. However, this
is only true for eS → 0 and so let us now consider
what the effect of moon eccentricity would be. The
(1− e2S) term in front rapidly drops to zero and out-
paces the divergent behavior of ΦTTV, causing the
combined function to tend to zero as eS → 1, which
is, of course, less than 1/

√
2. To consider intermedi-

ate eccentricities between 0 and 1, 107 Monte Carlo
samples were again generated as was done in Section 2
earlier. From this, it was found that the maximum
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Fig. 2: Same as Fig. 1 except showing only KOIs for which no TDVs are available. Here, it is assumed that no

TDVs will be found and so what is shown is a predicted limit on f using the expected TDV sensitivity from Eq. (19)

and the minimum f expression of Eq. (8). Almost two dozen KOIs with large TTVs are identified that should be

“killable” as exomoons, if TDVs were to become available.

occurs close to (but not exactly) iS → π/2, ωS → π/2
and $S → 3π/2, for which:

lim
iS→π2/

lim
ωS→π/2

lim
$S→3π/2

β =

√
1 + e2S(

√
1− e2S − 1)

1 +
√

1− e2S
.

(30)

The RHS is maximized when eS = 0.57747... for
which it evaluates to β = 0.71891. Since this isn’t
quite the exact maximum, it was compared to the
numerical search which finds the largest ever value
of β was 0.719734. Thus, even with very careful fine
tuning, the β term isn’t able to noticeably rise above
1/
√

2 = 0.707... in value. Setting this as a limit then,
Eq. (26) becomes:

δTTV ≤ f

(
Ψ−1/3√

2nP

)(
q

3

)1/3

. (31)

It is now useful to write the amplitude in units of the
planetary period, yielding a fractional TTV, and to
move the

√
2 next to the RMS amplitude such that

it equates to a sinusoid amplitude, yielding:

(√
2δTTV

PP

)
≤ f

9

(
q

Ψ

)1/3

. (32)

For planets with Ψ deviating from unity by a large
amount, the system would probably be considered
suspicious as an exomoon host on the basis that
the planet have a high eccentricity (Domingos et al.
2006). Thus, generally, one expects Ψ ∼ 1, yielding:

lim
eP�1

(
ATTV

PP

)
<
fq1/3

9
. (33)

The above expression represents a TTV ceiling for
exomoons, where a reasonable choice for f would be
unity. However, since the TTV amplitude is an ob-
servable, one can also rearrange the above to give
another lower limit on f :

lim
eP�1

fmin =

(
9

q1/3

)(
ATTV

PP

)
. (34)

If an estimate of q is available, it is therefore straight-
forward to evaluate either of these equivalent expres-
sions. Since q is often not known for transiting plan-
ets, it is recommend here that one uses an upper limit
for the q estimate, so that the above is a conserva-
tive evaluation. This is done for the Holczer et al.
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(2016) KOI sample in Fig. 3, with more details pro-
vided later in Section 5.

As a more general example, the Jupiter-Sun pair
has q ∼ 10−3 and thus one would not expect frac-
tional TTV amplitudes greater than 1%. For smaller
planets, such as the Earth-Sun pair, the maximum al-
lowed fractional TTV amplitude drops another order-
of-magnitude to 0.1%. This provides some crude cuts
for removing suspiciously large TTV amplitudes in
the search for moons.

One might wonder if a TDV ceiling also exists.
Recall that the TDVs from an exomoon have two
quite distinct components, TDV-V and TDV-TIP.
The TDV-V effect is maximized as the moon’s semi-
major axis tends to zero. Of course, in practice
this cannot happen since the moon would impact the
planet. However, the existing TDV-V theory does not
extend to highly compact moons since the derivation
of Kipping (2009a,b, 2011) explicitly assumes that
the moon’s velocity is constant during the transit du-
ration. Once the moon’s period becomes comparable
to the duration or less, this is no longer true.

Further, it is highlighted that the TDV-TIP does
not have any true upper limit since it can bob a planet
in and out of transit entirely, in principle. Thus, one
would obtain a series of missed transits within the
overall sequence. For these reasons, combined with
the fact that any kind of TDV detection is relatively
rare, no effort was made to deduce a TDV ceiling
here.

5. APPLICATION

5.1. Applying to the Holczer et al. (2016)
Catalog

To apply these formulae, one requires a homoge-
neous catalog of both TTVs and TDVs for a sam-
ple of transiting planets. To this end, the Holczer
et al. (2016) catalog is utilized, which includes TTVs
for 2599 Kepler Objects of Interest (KOIs). It was
decided to perform an independent analysis of these
TTVs, in order to measure putative TTV amplitudes
for each, the statistical significance of said signals,
and upper limits on the TDVs. The catalog includes
TTVs for all 2599 KOIs and TDVs for cases where
the authors deemed the data quality was sufficient to
attempt their derivation.

First, for each KOI, the dispersion of the TTVs is
recorded by measuring the scatter of the TTV mea-
surements divided by their uncertainties. This essen-
tially tracks how many “sigmas” the TTV points are
dispersed about zero. To account for possible out-
liers, the median deviation multiplied by 1.4286 is
used as our measure of scatter. Any TTV measure-
ments which exhibit a deviation from zero greater
than 10 times this value are then removed. A further
cull is applied to any TTV measurements where the
TTV uncertainty is more than 3 times greater than
the median TTV uncertainty. The same process is
applied to the TDVs, where available.

Next, a Lomb-Scargle (LS) periodogram (Lomb
1976, Scargle 1982) is run through the TTVs using a
log-uniformly spaced grid of periods from the Nyquist
period out to twice the baseline of observations. The
log-period spacing of this grid was set to log2(0.01).

At each period, the best fitting sinusoid is computed
using a weighted linear least squares regression, sav-
ing the χ2 of the fit and the amplitude. Once the
periodogram is complete, the peak of highest χ2 im-
provement over a flat line is saved, whose period, am-
plitude and χ2 are used in what follows. These TTV
amplitudes comprise the y-axis information of Figs. 1,
2 and 3, where the TTV amplitude uncertainty is
assigned using Eq. (18) - but with the “TDV” sub-
scripts replaced with “TTV”.

Next, a filter is applied to only accept KOIs for
which the best sinusoidal fit is statistically favoured
over a simple flat line. This is accomplished by calcu-
lating the Bayesian Information Criterion (BIC) dif-
ference between the two models (Schwarz 1978), and
selecting only KOIs where the sinusoid yields an im-
proved BIC. From this, it was found that the vast
majority, 2437 of the 2599 KOIs, favor the sinusoidal
TTV model. Indeed, 1810 of these would be classed
as “very strong” (∆BIC > 10) using the Kass and
Raftery (1995) interpretative scale. This highlights
just how valuable tools to quickly classify this large
number of detections can be. The TTV amplitudes
and ∆BIC scores for each of 2437 KOIs are listed in
Table 1.

For the TDVs, one can first exploit the fact that
the hypothesis that is being tested requires the TDV
period to be equal to the TTV period (Kipping
2009a,b). One can therefore simply fix the TDV
period to that resulting from the earlier TTV peri-
odogram. It also noted TDVs due to an exomoon are
generally expected to be dominated by TDV-Vs (Kip-
ping 2009b) with a phase-lag of π/2 radians. This
reduces the TDV fit to a single parameter; ampli-
tude. This also makes the estimate of TDV error
and 3σ upper limit straight-forward, since for a one-
parameter model such as this one can simply use ∆χ2

to extract errors.
After running through all KOIs, only two KOIs

were found with a strong preference for a coupled
TDV signal (∆BIC > 10), KOI-1546.01 and KOI-
5802.01, which may deserve further attention. For
the others, the TDV 3σ upper limit is used to com-
pute fmin via Eq. (8), where basic transit parameters
(e.g. transit duration) are taken from the NASA Exo-
planet Archive (Akeson et al. 2013). From this, Fig. 1
is produced, which identifies 40 “impossible moons”
from 708 KOIs with TDVs. If the constraint is tight-
ened such that only prograde moons are permitted
(f < 0.5), then this substantially increases to 198
KOIs.

In cases without any available TDVs, it is instead
investigated what constraint on fmin one might ex-
pect them to provide, if they were to be derived. This
is done following the methods described in Section 3,
where it is assumed that no TDVs will be found and
calculate a predicted limit on f using expected TDV
sensitivity from Eq. (19) and the minimum f expres-
sion of Eq. (8). Fig. 2 shows the result of this exercise,
where 20 KOIs were identified (out of 1729 without
TDVs) for which TDVs measurements should be able
to completely exclude the exomoon hypothesis, as-
suming no TDVs are found. Again, this steeply rises
to 237 if one allows prograde moons only.
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Fig. 3: Same as Fig. 1 except the minimum exomoon semi-major axis (normalized by the planetary Hill radius) is

calculated using the TTV ceiling effect of Eq. (34). On this basis, 179 KOIs can be rejected as being plausibly due

to a single exomoon, shown in red. Note that all 2437 KOIs are not shown from the full sample, since 21 do not have

planetary radii necessary to compute the TTV ceiling and are thus removed.

The accuracy of the predicted fmin values can be
tested applying the same procedure to the 708 KOIs
in the full sample which truly do have TDVs. In
this way, one can plot the predicted fmin against the
calculated fmin values found earlier. This is shown
in Fig. 4, where a nearly 1:1 relation is obtained, as
expected. From the figure, one can see a subset of
KOIs for which the predicted fmin are too optimistic,
which is to be expected since the real duration mea-
surements can be occasionally degraded in precision
due to effects such as data gaps, star spots and flar-
ing.

Finally, for the TTV ceiling, one needs an estimate
of q mass ratio between the planet and the star. For
this, the Chen and Kipping (2017) mass-radius re-
lation is used in what follows. In cases where the
relation becomes degenerate (specifically around a
Jupiter radius), the upper allowed limit on the mass is
used, following the argument outlined earlier in Sec-
tion 4. For 21 KOIs, the NEA does not list a plan-
etary radius (or transit depth) and thus it was not
possible to estimate a TTV ceiling for these cases�.

�These are KOIs 2311.01, 2640.01, 4956.01, 5000.01,
5074.01, 5160.01, 5161.01, 5177.01, 5194.01, 5210.01, 5309.01,
5368.01, 5374.01, 5377.01, 5437.01, 5450.01, 5537.01, 5783.01,
5824.01, 5837.01, 5955.01.

The TTV ceiling criterion provides the greatest
number of impossible moons, 179 KOIs. These con-
sistently show the highest TTVs for planets of com-
parable periods; the upper tail of the TTV amplitude
distribution. These are surely interesting TTV sys-
tems, being highly significant, but can be rejected
for an exomoon survey. These fmin limits are made
available in Table 1.

5.2. Application to Kepler-1625b

Additionally, the methods described in this work
are applied to the only known example of an exomoon
candidate - Kepler-1625b i (Teachey and Kipping
2018). The possible existence of Kepler-1625b i re-
mains a topic of ongoing investigation. For example,
Kreidberg et al. (2019) recover the associated TTV
signal but not the moon-like dip, although Teachey
et al. (2020) shows that their analysis exhibits higher
systematics. In contrast, Heller et al. (2019) recover
both the TTV and moon-like dip, but suggest an in-
clined hot-Jupiter as an alternative hypothesis, which
could be tested with precise radial velocities. A de-
tailed discussion of the candidacy of this object is
beyond the scope of this paper, but clearly applying
our newly derived tests to the only candidate transit-
ing moon is a basic application expected for any new
test.
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Table 1: Results from our application of the methods described in this work to the transit timing catalog of the

KOIs presented by Holczer et al. (2016). Only a portion of the table is shown here.

KOI P [d] ATTV [m] ∆(BIC)TTV fmin (TDV) fpredmin (TDV) fmin (TTV) TDVs?

1.01 2.471 0.0265± 0.0082 8.4 0.874 0.707 0.000154
2.01 2.205 0.052± 0.019 2.8 1.44 1.45 0.000386
3.01 4.888 0.133± 0.033 23.5 0.638 0.472 0.00404
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Fig. 4: Comparison of the predicted lower limits on f
versus the actual obtained values for 708 KOIs. It was

found that the predictions are generally sound although

there is some subset of KOIs for which the real TDV pre-

cision is worse than the forecasted value.

Since no TDVs were explicitly derived in the orig-
inal paper, it is first necessary to obtain them. A
starting point for this process are the transit fits and
processed data used by Teachey and Kipping (2018).
In particular, the “T” model of that work is a suitable
jumping off point, which assumes that no moon is
present and just fits the light curve trends and transit
profile with a simple Mandel and Agol (2002) model.
The “T” stands for TTVs, because the model gives
each epoch its own transit time as a free parameter,
but the other parameters, such as impact parame-
ter and stellar density, are globally shared across all
epochs (which imposes a constant duration). Start-
ing from this model, it is updated to let ρ? also be
uniquely assigned to each epoch. This increases the
dimensionality of the “T” model by three new param-
eters (four epochs minus the original global stellar
density term). Since the stellar density controls the
planetary semi-major axis, which in turn controls the
planetary velocity, this inclusion allows for the mea-
surement of the TDV-Vs directly.

For the models that do not include a moon, the
agreement between the different trend models at-
tempted by Teachey and Kipping (2018) are excel-
lent and on this basis the exponential long-term trend
model is adopted in what follows.

With this new TDV model, the four light curves
provided by Teachey and Kipping (2018) are re-
fit using MultiNest (Feroz and Hobson 2008,
Feroz et al. 2009), yielding a chronological se-

quence of durations (using definition T̃ ; Kipping
2010) of 1039+18

−17 mins, 1068+16
−14 mins, 1034+26

−68 mins

and 1063.7+6.2
−5.4 mins. The most recent duration here

comes from the HST observations of Teachey and
Kipping (2018), which clearly provides substantial
improvement in precision.

The constant duration model performs well
against these data, with χ2 = 2.967 for four data
points. As an additional check on this, one may com-
pare the Bayesian evidences between the original “T”
model of Teachey and Kipping (2018) and this mod-
ified model which allows for TDVs. From this, it
is found that the original model is indeed favoured
with a Bayes factor of K = 87, 000 - a decisive pref-
erence for a constant duration model. Accordingly,
it is concluded that there exists no evidence for de-
tectable TDVs. This is perhaps not surprising given
that the Teachey and Kipping (2018) solution places
the moon at a fairly wide separation, where TDVs
are attenuated.

Having established that no TDVs exist, the next
step is to calculate an upper limit on the TDV am-
plitude. This is straight-forwardly achieved by fitting
an offset + sinusoid to the derived durations using a
simple MCMC, infers a 3σ upper limit on the TDV
amplitude of 55 mins.

It is now possible to use the TDV upper limit
along with the TTV amplitude to infer the minimum
allowed exomoon semi-major axis, without ever for-
mally fitting the data to an exomoon model. The
TTV amplitude is not actually fit per say in Teachey
and Kipping (2018), but rather is incorporated into
their photodynamical planet+moon solution. From
the reported TTVs, a sinusoid was regressed to ob-
tain ATTV = (19.1 ± 1.9) minutes. The ratio of the
quoted uncertainty compared to the amplitude indi-
cates that this is highly significant and indeed this
has already been established through the Bayes fac-
tor comparison in Teachey and Kipping (2018), who
find a K = 10.0 in favor of the TTV model over
a static case. Plugging these numbers into Eq. (8)
yields f > 0.046.
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For the TTV ceiling effect, a rough estimate can
be found by simply assuming the planet is of order of
a Jupiter mass, given that it approximately a Jupiter
radius. Using Eq. (34), this yields f > 0.0042. Thus,
in this case, the TDV floor limit imposes a tighter
constraint. Certainly then, there is plenty of room for
an exomoon given the current timing measurements.
Indeed, the exomoon solution of Teachey and Kipping
(2018) places the moon at f ' 0.2, which satisfies this
minimum constraint.

6. DISCUSSION

This work derives two distinct, but related, means
of calculating a lower limit on an exomoon’s semi-
major axis divided by its planetary Hill radius, con-
ditioned upon the hypothesis that an observed (and
significant) TTV is solely caused by a single exomoon.
If either of these lower limits exceeds unity (i.e. the
moon is outside the Hill sphere), the hypothesis can
be rejected on the via an argument of reductio ad ab-
surdum. One is free to modify the critical limit to less
than unity, under more conservative assumptions re-
garding the range of stable moons (e.g. see Domingos
et al. 2006).

The two methods both assume that a TTV de-
tection has been made and that one has in hand a
TTV amplitude. They differ in whether they assume
an upper limit on the TDV amplitude has been com-
puted. Most directly, our work asks whether the de-
tected TTV amplitude could plausibly be caused by
an exomoon? Of course, if a signal passes these tests,
that does not mean that one can necessarily claim
an exomoon detection on this basis alone - follow-up
investigations using tools such as photodynamics will
be needed (e.g. Teachey and Kipping 2018). How-
ever, failing one of the criteria is damning for the
hypothesis that the observed TTVs are solely caused
by a single exomoon. Nevertheless, one could suggest
that some component of the TTVs are still caused by
one (or more) moons, with other TTVs effects con-
tributing to the total - although the additional com-
plexity of such a hypothesis would certainly necessi-
tate some specific motivation to justify.

The two limits are given by Eqs. (8) and (34).
Since both require the TTV amplitude, but only the
former requires the TDV upper limit, it is worth-
while pausing to ask whether the former ever realisti-
cally undercuts the latter, or can we generally rely on
Eq. (34) alone for the best limits? From the applied
examples in this work, using the Holczer et al. (2016)
Kepler transit timing catalog, 40 impossible moons
were identified via Eq. (8), and 179 via Eq. (34), but
critically only one object which appears in both lists
(KOI-5497.01). Tightening the f constraint to only
prograde moons (f < 0.5) yields many more impos-
sible moons for both methods (see Figs. 1 and 3) yet
only one new overlapping object (KOI-4927.01). It is
further highlighted that the TTV ceiling requires an
estimate of the planet-to-star mass ratio, whereas the
TDV floor does not. Thus, the two limits are highly
complementary and the use of both is recommended.
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Fig. 5: Cumulative histogram of the fmin value derived

using both the TDV floor and TTV ceiling together (tak-

ing the maximum of the two) for the KOIs in our sample.

About 9% of the sample can be rejected as being plausibly

due to an exomoon using the most generous assumptions

about moon stability (f < 1) and 29% using f < 0.5.

This work highlights that there are a considerable
number of KOIs for which TDVs would be useful. Of
the 1709 KOIs without TDVs in the used sample, it
was found that 22 should be expected to yield a TDV
upper limit sufficient to completely exclude moons
(since fmin > 1). Of these 22, 11 already have a
TTV ceiling constraint that indicates an impossible
moon. For the other 11 (KOIs 72.01, 452.01, 732.01,
1300.01, 1428.01, 2215.01, 2573.01, 3913.01, 4927.01,
5128.01, 5713.01), the current TTV constraints do
not fully prohibit an exomoon and thus these would
make interesting objects for follow-up investigations.

Repeating this for a critical f threshold of 0.5 in-
creases the number of KOIs deserving of TDV follow-
up to 109 - Table 1 provides a full list of these. A
cumulative histogram of the best possible constraint
on f is shown in Fig. 5 for the full sample used in
this work.

It is briefly highlighted that application of these
techniques to Kepler-1625b offers another example of
a test that this moon candidate survives. As empha-
sized earlier, passing this test does not itself prove the
case for a moon, but failure to do would have provided
a simple means to discard the exomoon candidate.

As demonstrated from these examples, the tests
discussed here provide a simple and well-motivated
test to remove spurious signals in the search for ex-
omoons. Their application is encouraged to those
looking for such effects, as an expedient means of re-
moving false-positives. More broadly, this work show-
cases the value of timing effects and the benefits of
community derived TTVs and TDVs.
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Originalni nauqni rad

Neka predvi�aǌa daju da egzomeseci mo-
gu izazvati varijacije trenutka tranzita
(VTT) matiqne planete. Na�alost, isti
efekat izazivaju i mnogi drugi astrofiziq-
ki fenomeni – najistaknutiji me�u ǌima je
prisustvo drugih planeta u sistemu. U ovom
radu koristi se agrument svo�eǌa na ap-
surd, reductio ad absurdum, utvr�ivaǌem efe-
kata na trenutke tranzita koje je nemogu�e
pripisati jednom egzomesecu. Izvodimo tri
kǉuqna analitiqka testa. Prvo, mo�e se is-
koristiti qiǌenica da bi VTT signali sa
egzomeseca trebalo da prate varijacije u
du�ini trajaǌa tranzita (VDT), i da se
mo�e izvesti doǌi nivo VDT kao mini-
mum oqekivanog stepena varijacija. Sluqa-
jevi u kojima je gorǌa granica VDT is-
pod ovog doǌeg nivoa se mogu odbaciti kao
mogu�i egzomeseci. Drugo, predstavǉene su

formule za procenu mogu�nosti odbacivaǌa
prisustva meseca i kad nisu prisutne VDT,
i na taj naqin se omogu�ava nauqnoj zajed-
nici da uvidi vrednost izvo�eǌa VDT unap-
red. Tre�e, izvedena je gorǌa granica za VTT
vrednost, iznad koje egzomeseci ne bi nikada
trebali da proizvode VTT. Ovi alati pri-
meǌeni su na katalog VTT i VDT za dve i
po hiǉade objekata tzv. Kepler Objects of In-
terest, gde je na�eno preko dve stotine sluqa-
jeva koji ne mogu biti uzrokovani mesecom –
iznena�uju�e veliki broj poznatih VTT am-
plituda jeste konzistentan sa mesecom kao
uzroqnikom. Ovi testovi su tako�e primeǌeni
na kandidata za egzomesec Kepler-1625b i koji
glatko ispuǌava kriterijum. Ovi jednostavni
analitiqki rezultati bi trebalo da obezbede
brzo odbacivaǌe potencijalnih egzomeseci i
pojednostavǉeǌe potrage za satelitima.
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