THE NUMBER OF PRIMES Y"  (—1)"~ii! IS FINITE

MIODRAG ZIVKOVIC

ABSTRACT. For a positive integer nlet Apy1 = > 1 (—1)" %!, In = 2:‘;_01 1!
and let p; = 3612703. The number of primes of the form A,, is finite, because
if n > p1 then A, is divisible by p;. The heuristic argument is given by
which there exists a prime p such that p| In for all large n; a computer check
however shows that this prime has to be greater than 223. The conjecture that
the numbers !n are squarefree is not true, because 545032 | 126541.

Let N and P denote the set of positive integers and the set of prime numbers,
respectively. For integers m, n let (m,n) denote their greatest common divisor,
and let m mod n denote the remainder from division of m by n. The fact that m
divides (does not divide) n is written as m|n (m { n). For n > 2 let

n
Apgr = (1)l
i=1
and let

(left factorial function defined by Kurepa [7]). Here we consider the following three
questions from [3]: is it true that

(1) ap = Ap mod p # 0 for all p € P?

(this question is raised in connection to [3, Problem B43]: is it true that there are
infinitely many prime numbers among A,,, n € N7?),

(2) rp:=pmodp#0forallpe P, p>27

([3, Problem B44]; an equivalent of the Kurepa hypothesis [7]), and is it true that
(3) foralln e N, n >3, is In squarefree?
(

also in [3, Problem B44]; the second Kurepa hypothesis [7, 9]).

Wagstaff verified that (1) and (2) are true for n < 46340 and n < 50000, respec-
tively. The calculations were extended by Mijajlovié [9] ((2) for p < 311009), Gogié¢
[2] ((1) and (2) for p < 1000000) and Malesevié [8] ((2) for p < 3000000). Mijajlovié
[9] proved that if n € N, p € P and 2 < p < 1223, then !n is not divisible by p?.
An overview of these questions is given in [4].

Fork € Nlet N(k) ={0,1,...,k—1} and let Ry, denote the random variable with
the uniform probability distribution (PD) over the set N (k). The values n! mod p
and n! mod p?, 1 < n < p, might be considered as the independent realizations of
R, and R, respectively (more precise model could exclude a few boundary values of
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n). Consequently, for arbitrary p € P we can think of a, and r, as the realizations
of R,,.

To check these assumptions, two types of chi-square statistical tests were carried
out (for details see for example ([6, Chapter 3])). The purpose of the first one is
to check if given n = p — 1 integers z; € N,, 1 <4 < p, might be considered as
independent realizations of R, (the interesting cases for z; are of course i!, !(i +1),
and A;41). The number k is appropriately chosen and the set NN, is divided into
k subsets (categories), so that z; belongs to the category [kz;/p] € Ni, 1 <i<p
(here [z] denotes the integral part of the real number z). The frequencies

fi={i1<i<p|lkz/pl=j}, 0<j<k,

and the expected values nm;, 0 < j < k, can be computed, where

m; = Pr([kRy/p) = j) = ([pi/k] — [p(i — 1)/k] + 6i.0 — 05 k—1) /p =~ 1/k.

Here §; ; is the Kronnecker symbol, equal to 1 (0) if i = j (i # j). The frequencies
are checked using the 2 statistics,

k—1
(4) X =Y (f; —nmy)?/ (nmj)

i=0
If the value of x? is large, then we can say that this experiment contradicts the
uniformity of z;, 1 < i < p. The values of x? are calculated with p taking values
from a set of random primes (the two first primes following the randomly chosen
integer from (2!,2!*1), 10 < 1 < 23), and with z; equal to 4!, !(i + 1), and A;yq,
1 <@ < p, respectively. As expected, the results do not contradict the uniformity
assumption. The results for the pairs of consecutive primes do look independent.

The aim of the second type of tests is to check the uniformity of the distribution

of ap/p and 7, /p (when p € P varies) between the subdivisions

(5) [i/k,(i+1)/k), 0<i<k,
of the unit interval, for some fixed k. Let 2, denote a, or r,. Choose some integers
a < b and a prime p € P(a,b) := {pe Pla<p< b}. For 0 < j < k compute the
frequencies

fi=H{p e Pa,b)| lkzy/p] = j}
and the category probabilities

m; = Pr([kR,/p) = j) ~ 1/k.

Let n = |P(a,b)| be the cardinality of P(a,b). The PD of R,/p over the equal
intervals (5) is approximately uniform and independent of p. The values of x? (4)
are computed for z, = a,,7,, and (a,b) = (2!,271), 10 <1 <23 (10 < I < 22 when
zp = ap). The results obtained do not contradict the supposed statistical model.

Using the assumptions about a, and rp,, we see that (1) and (2) are related to
the event

)

Roo = [({R, #0}.

peP
But according to Mertens’s theorem (see [10, Theorem 3.1] for example)

H l—--)>~— asx — o0,
P Inz

pEP(2,z)
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where ~ is Euler’s constant, so e™ =~ 0.5615. Therefore, Pr(R.) = 0. More
precisely, we have the following asymptotic relation

1
Pr ﬂ {R, # 0} ~—, AT — 00
pEP(z,x)

This heuristic argument suggests that (1) and (2) are not true, and even more,
that the number of counterexamples is infinite. The ”probability” that there is a
counterexample p € P(x,z%) to (1) or (2) is approximately 1 —1/«. With the same
probability of 1/2, one counterexample to these claims might be expected in the
intervals (2%,26] = (8,64), (2°,2'?] = (64,2048] and (2'?,22*] = (2048, 16793216].
The probability of finding counterexamples in (2”, 2"*1] is approximately 1/(n+1).
The complexity of the search for counterexample < z by the obvious algorithm is
O(x?/Inz) [9], which makes it very difficult to check (1) or (2) if for example
p > 2%,

The search for values p € P satisfying p|A, was performed using a simple
assembler routine for an Intel 80486 microcomputer (at 100MHz) calculating a,.
After approximately 130 hours it was found that for p = p; = 3612703 we have
p|A,. This fact gives a solution of [3, Problem B43], because for all n > p; we
have p; | A,, and so A, is not prime if n > p;. The numbers A, are prime for
n € {4,5,6,7,8,9,11, 16, 20, 42, 60,62, 106, 161}. Keller (see B43 of [3]) found the
last five primes from the list and checked the primality of A, for n < 336. The
necessary condition for primality

(6) 3M=1 =1 (mod M)

where M = A, is not satisfied if 336 < n < 563 (calculations are done using
UBASIC [11]), and so the list of known primes A, remains unchanged. By a
heuristic argument it could be estimated that if n < p; then A,, is prime with the
"probability” 2/n (its prime factors are between n and \/A,,) and that the total
number of primes A,, is approximately 21Inp; ~ 30.

The similar search for values p € P satisfying p| !p, approximately 600 hours
long, ended without success. No counterexamples were found to (2) for p < 2%,
The files containing all the residues a,, p € P(2,2%?) and rp, p € P(2,2%3), could be
obtained from the author on request. An excerpt from the files is given in Table 1
where the instances of a, and 7, less than 10 or greater than p — 10 are listed.
Here we see that the congruences !p = 8 (mod p) and !p = —7 (mod p) have no
solutions p < 223. This means that (!n — 8)/2 and !n + 7 are not divisible by
any prime less than 223; as for A,,, it is not known whether the number of primes
of those two forms is finite (of course, according to the probabilistic model, it is
finite). The check shows that (6) is satisfied by M = (In — 8)/2, n < 563 if

n € {5,6,7,8,11,14,15, 16,21, 25, 48, 49, 70, 108, 111, 206"},
and that (6) is satisfied by M =!n 47, n < 563 if
n € {3,4,5,7,10,12, 20,37, 52,73, 149, 304*, 540 }.

Primality of those numbers (excluding the ones with the corresponding n marked
by an asterisk) is proved using UBASIC program APRT-CLE [1].

Let a be an arbitrary integer. Consider now divisibilities from B44 of [3], i.e.
the prime powers p* (k > 1) dividing !n + a for all large n. For given p € P and
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TABLE 1. The values of a,, p < 222, and 7,, p < 223, close to 0 or p

[ pla ] plp—ap plr plp—ry]
211 2 1 210

311 3 2 311 3 2

51 4 5 1 51| 4 5 1

71 3 7 4 71 6 7 1

11| 4 11 7 11| 1 13 3

17| 8 13 1 1919 17 4

311 9 17 9 31| 2 23 2

411 1 19 5 371 5 67 2

43 | 5 23 5 41 | 4 71 3

47 | 6 37 1 163 | 4 113 4

67| 5 71 7 1971 9 139 5

79| 4 109 5 217 | 7 227 2

157 | 6 131 3 373 | 2 349 6

191 | 6 197 2 467 | 3 2437 5

307 | 5 229 9 evan 4337 5

641 | 3 367 4 11813 | 6 10331 2

647 | 5 463 1 33703 | 9 77687 3

1109 | 2 691 2 2275843 | 3 126323 8

2741 | 3 983 3 3467171 | 5 274453 1

3559 | 3 1439 2 4709681 9
394249 | 1 11119 3
2934901 | 1 16007 4
3612703 | O 22619 3
32833 6
3515839 2

k € N let

m(p, k) =min{i € N |pF|il}.
The number m(p, k) is of course a multiple of p, and if k& < 3 then m(p, k) =
(k — 6p2)p. For all n > m(p, k) we have

'n = !m(p,k) (mod p*)
Therefore, for all n > m(p, k)

(7 PPl n+a it p¥|Im(p k) +a.
Especially, if p > 2 and k& < 3 then for all n > kp
(8) PPl n+a iff p*|l(kp) +a.

The case a = —1 is considered by Mijajlovi¢ and Keller (B44 of [3]). Mijajlovié
noted that 3| In—1forn >3,9| In—1forn > 6, and 11| In—1 for n > 11 (by (8)
this is the consequence of 3| 13—1, 3% | 16 —1 and 11| 111 —1). Keller found no new
divisibilities of !n — 1 for n < 10%. From Table 1 it can be seen that 3 and 11 are
the only primes p < 223 satisfying r, = 1, and therefore dividing !n —1 for all large
n. In Table 2 the factorizations of n — 1, n < 42, (obtained using [5]) are given.
The consequence of 112 1 (2 x 11) — 1 and 3% 1 (3 x 3) — 1 is that 112 { In — 1 for
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n >22and 3% {In — 1, for n > 9. We conclude that p¥ = 32 is the only repeated
factor of n — 1 for all large n if p < 2%3.

The case a = 0 is somewhat simpler. Because r, # 0 for all p € P(2, 223) there
is not any p < 223 such that p| In for all large n. The other cases —10 < a < 10
might be considered similarly using Table 1.

The other consequence of (7) is that if for the given prime power p*, k > 1, we
are looking for all n € N such that p* | !n 4 a, then it is enough to check the values
of n < m(p,k). Let [ be the smallest integer satisfying p' { !m(p,1) +a. Ifl <k
then it is enough to check if p* | In + a for n < m(p,l) < m(p, k) (n < pifl =1,
which is most often the case). Otherwise, if | > k, then p*| !m(p, k) + a and so
p¥ | 'n 4 a for all n > m(p, k). Some repeated factors of !n — 1 may be seen from
Table 2: 3*| 18— 1, 112| 113 — 1, 112|121 — 1 and 37%| 125 — 1. By (8) there are no
other numbers !n — 1 divisible by 3% or 112, because 3% {19 — 1 and 11% {122 — 1.
In Table 3 the triads (p,n,r) are listed satisfying r =!n mod p < 10, p € P(2,2%°)
and n < 2p, except those for which !n < p. We see that the only new solution
of p?| In — 1, p < 220, n € N, is 416112 | 126144 — 1. From Table 1 we see that
r41611 7 1 and consequently 41611 1 !n — 1 for n > 41611.

Table 3 contains a counterexample to (3): the relation 545032 | 126541 shows that
left factorials are not always squarefree. The existence of a counterexample also
has a ”probabilistic” explanation. Considering the values !n mod p?, 1 < n < p,
as the independent realizations of R,2, the check of !n mod p? # 0, 1 <n < p, for
fixed p € P corresponds to the event T}, that p independent outcomes of R,> are
all different from 0. Using the inequality

3R <)

which can be easily proved, we conclude that
Pr(T,) =(1—-1/p*)P ~1-1/p

for large p. It follows that (3) and (1) have the same asymptotic ” counterexample
densities”.

The seemingly unexpected repetitions in Table 3 can be explained as follows. The
remainders !n mod p?, p < n < 2n, have the same remainder modp. Therefore, if
Ip mod p < 10 (hence this p appears in Table 1), then with the high ”probability”
of (1 —1/p)P~! ~ e~! there will be exactly one such entry (p,n,r) in Table 3;
furthermore, with the ”probability” of (5)1/p*(1 — 1/p)P=2 ~ 0.5¢~! there will
be two entries (p,n,r) and (p,n’,r) with the same small remainder. Even the
probability of three entries differing only in the second position is not too small,
approximately e~1/6. Otherwise, if !p mod p > 10, then

('n mod p?) mod p =!p mod p > 10 for p < n < 2p,

and therefore there cannot be an entry (p, -,-) in Table 3.
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TABLE 2. The factorizations of !n — 1, n < 42.

‘ The factorization of 'n — 1

—
O © 00~ Uk w3

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

3
32

3x11

x 17

x 97

X 73

x 11 x 467

x 131 x 347

x 11 x 40787

x 11 x 443987

x 112 x 23 x 20879

x 11 x 821 x 83047

X 11 x 2789 x 340183

x 11 x 107 x 509 x 259949

x 11 x 225498914387

x 11 x 163 x 20143 x 1162943

x 11 x 19727 x 3471827581

x 11 x 29 x 43 x 1621 x 641751001

x 112 x 53 x 67 x 662348503367

x 11 x 877 x 3203 x 41051 x 4699727

x 11 x 11895484822660898387

x 11 x 139 x 2129333 x 922459185301

x 11 x 372 x 29131483 x 163992440081

x 11 x 454823 x 519472957 x 690821017

x 11 x 107 x 173 x 7823 x 12227 x 1281439 x 1867343

x 11 x 431363 x 2882477797 x 91865833117

x 11 x 191 x 47793258077 x 349882390108241

x 11 x 37 x 283 x 5087 x 1736655143086866180331

x 11 x 2771826449193354891007108898387

x 11 x 1231547 x 306730217 x 227214279676815713

X 11 x 41 x 163 x 224677 x 278437 x 6562698554476756561
x 11 x 109 x 839 x 2819 x 40597679 x 8642572321688037037
x 11 x 3072603482270933019578343003268898387

x 11 x 7523968684626643 x 14280739323850758510209

x 11 x 542410073 x 7125524357434108671946525659019

x 11 x 379 x 2677 x 5685998930867 x 24769422762368668966567
x 11 x 127 x 338944799 x 126050058872020979628982810240819
x 11 x 956042657 x 221187999196843747210838711867563891
x 11 x 8453033680104197032254976173172281742468898387
x 11 x 1652359939 x 276306566079013 x 758627421394906687355741
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TABLE 3. The small values of !n mod p? < 10, for p € P, p < 229,

I<n<2p
H p‘ n‘!nnmdpQH p‘ n‘!nnmdsz
2| 3 0 83 60 5
2| 4 2 163 183 4
3| 4 1 163 273 4
3| 5 7 173 152 3
3| 6 1 197 355 9
5| 5 9 373 185 6
5| 6 4 373 514 2
5| 9 9 467 730 3
7| 6 7 467 902 3
1113 1 3119 306 6
1121 1 4357 837 7
17| 7 7 7717 9402 7
17| 11 6 7717 | 15415 7
19 | 17 9 8297 4727 7
19 | 20 9 33703 | 39795 9
37125 1 33703 | 43801 9
37163 5 33703 | 52337 9
41 | 55 4 41611 | 26144 1
431 9 9 54503 | 26541 0
47 | 19 8 302837 | 283148 8
59 | 41 9 351731 | 135646 8
67 | 29 8

9. 7. Mijajlovi¢, On some formulas involving !'n and the verification of the !n hypothesis by use
of computers, Publ. Inst. Math. (Beograd), 47(61), 1990, 24-32

10. H. Riesel, Prime numbers and computer methods for factorization, Birkhauser, Boston, 1985.

11. UBASIC, version 8.74, 1994.

MATEMATICKI FAKULTET, BEOGRAD
E-mail address: ezivkovm@matf.bg.ac.yu



