ROW SPACE CARDINALITIES

MIODRAG ZIVKOVIC

ABSTRACT. Let By be the set of all n X n Boolean matrices. Let R(A) denote

the row space of A € By, let R, = {r | r = 1(A), A € B,}, and let ap, =

min{qg > 1| ¢ ¢ Rn}. By extensive computation we found that

RoN[1,256] = [1,190] U [192,204] U {206} U [208,212] U {214, 216,220} U
[224, 228] U {230, 232, 236, 240, 248, 256},

and therefore ag = 191. Furthermore, an, > 5 v/ 336" for n > 31. We proved

that if n > 7, then the set Ry, N (2772 + 27~3 27~1] contains at least

n? —Tn+14+ i ((n — 8)(n — 10)(2n — 15) 4+ 3(n mod 2))

elements.

1. INTRODUCTION

Let B,,., denote the set of all m x n Boolean matrices, and let BB,, = B,,,,. The
set B,, with the ordinary matrix multiplication and Boolean operations on entries
is a semigroup. Let R(A) denote the row space of A, i.e. the subspace spanned
by the rows of A. Analogously, let C(A) denote the column space of A; then
|C(A)] = [R(A)] [1].

Denote R,, = {r | r = |r(A)|, A € B,,}. Obviously, R,, C [1,2"]. Konieczny [4]
proved that R, N (2"71,2"] = {2771 +2¥ | 0 < k < n — 1}, and conjectured that
[1,2"71] € R,. Li and Zhang [6] proved that Konieczny’s conjecture is not true,
because if n > 6, then 2"~! — 1 ¢ R,,. Furthermore Hong [3] proved that

Rn N ((2n—1 _ 271—5’ 2n—1 _ 2n—6) U (Qn—l _ 2n—67 2n—1)) — (2)7 n > 7

i.e. that there are at least two gap intervals in R? = R,,N[1,2""1]. He also proved
that 271 — 2" ¢ R, and 2" ! — 2" 6 c R,,.
Breen [2] verified R7 (RY = [1,64] \ {61,63}) and obtained Rs:

RY = [1,128] \ {109,111,117,119, 121,122, 123, 125,126, 127}.

Let a, = min{qg > 1| ¢ ¢ R,,}. The first 8 members of this sequence are 3, 5,
7, 11, 19, 35, 61 and 109. Zhong [5] proved that a, > 6v2" — 7 for n > 13 odd,
ay > \/@\/ﬁn—7forn2 14 even, and so a,, > \/@\/in — 7 for n > 14.

By extensive computation we obtained the set Rg and ag = 191. Using a special
construction connecting elements of subsequent sets R,, we improved the lower
bound for a,: a, > 5336 for n > 31. In the set R, N (2”_2 —|—2"‘3,2"_1},
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n > 7, we found at least

n® —Tn+14 + 2—14 ((n —8)(n —10)(2n — 15) + 3(n mod 2))
different elements. Because of the agreement with the result of Hong [3], we hy-
pothesize that this set contains no other elements.

Notation. Depending on context, 0, 1 denote numbers or matrices with all
elements equal to 0 and 1 respectively; 0,,, 1,,, I), denote 0-, 1-, and identity matrices
in B, respectively; Opixn, Lmxn € Bmn denote 0-, 1-) m X n matrices, respectively;
A;. denotes the ith row of the matrix A. W (A) denotes the weight (the number of
ones) in A, and r(A) = |R(A)| is the row space cardinality of A.

2. THE SET Ry

We say that matrices A and B from B,, are permutationaly equivalent, A ~ B,
if B = PAQ, where P, Q are are permutation matrices. Obviously, if A ~ B
then r(A4) = r(B). We obtained Rg using the list of permutationaly nonequivalent
matrices in Bs [8].

Let A, denote the lexicographically smallest matrix in the equivalence class
containing A; we call it the m-representative of A. Let B} denote the set of =-
representatives in B,,. For an arbitrary B € B,,_1, let bord(B) denote the subset
of B,,, containing matrices with the upper left minor equal to B. We say that the
matrices in bord(B) are obtained by extending B; if A € bord(B), then A is an
extension of B. Furthermore, let bord,(B) = {A, | A € bord(B)}. Williamson [9]
noted that if B and B’ are equivalent, then bord,(B) = bord,(B’). Therefore,

Ry = UBegg{I‘(A) | Ae bOTdﬂ—(B)}

Theorem 2.1.

Rg = [1,190] U [192,204] U {206} U [208, 212] U {214, 216,220} U
(2.1) [224, 228] U {230, 232, 236, 240, 248, 256}
and ag = 191.

Proof. Denote by R the set from the right hand side of (2.1). If B is obtained by
extending A € B,, with zero row and zero column, then r(B) = r(A). Therefore,
Ry C Ruy1, and [1,108] C Ry.

Let R(A) = {r(B) | B € bord(A)}. After determining R(A4;), where

Ay

I
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0 0 000 OO0 1]
00 0O0O0O0T1F0
00 0O0O0T1UO0O0
A2:00001000
00010000/
001 000UO0O
01 000UO0UO0O
| 1.0 0000 1 1|
[0 00O O OO0 17
00 00O0UO0T1O0
000O0O0T1O01
A3:00001110
00011000
00110000
01 0100U0O0
| 1.0 0 1 00 0 0]

it can be verified that
[109,177] U {183} C R(A3), [178,190] \ {183} C R(A2), and

(192, 204] U {206} U [208,212] U {214, 216, 220} U
224, 228] U {230, 232, 236, 240, 248, 256} C R(A,),

proving that R C RY.

The proof of R C R is more complicated, because the row space cardinalities of
all extensions of all 14685630688 matrices from B have to be checked. The actual
computation of all these (approximately 2 x 10'%) RSCs is, of course, practically
impossible. In order to skip some RSC computations, we used the upper bound on
r(A) determined using only two or three rows of A with the appropriately chosen
indices 4, j, k (see for example [3]):

bs(A,i 5, k) = gn=3 4 gn=W(Ai) 4 gn-W(A;) 4 gn-W(Ar) 4 gn-W(Ai+4;) 4
+ 27l—W(Ai.+Ak.)+2"—W(Aj,+z4k.)_|_2"—W(Ai.+Aj.+Ak.)’

and

b(A, i, 7, k) = min{b3(A,1,75,k),ba(A,4,7)}.
If, for example, B € By has two rows with at least 5 ones, i.e. W(B;) > 5 and
W (B;)) > 5 for some i, j, then r(B) < ba(B,i,j) <2972 +3.2975 = 176.

If we already know matrices with RSCs 1, 2, ..., g, and we estimate that the
upper bound for the next extension B of the current matrix A € B is less than or
equal to g, then the computation of r(B) can be skipped. Even more, we do not
determine r(A) if the upper bound for r(A) is less than g/4. In our case g = 190.
This fact is incorporated in Algorithm 2.2, which for given A € B,, and g determines
R(A) N (g,2"]. After determining R(A) N (g,2") for all A € B by Algorithm 2.2,
we obtained that RY C R, ending the proof. (]
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Algorithm 2.2. Determine R(A) \ [1, g].

Input : n, g — integers, A € B,;
Output : S =R(A)N(g,2"].
S = 0
g =min{b(A,1,2,3),b(AT,1,2,3)};
if ¢’ > g/4 then
r =r(A);
if » > g/4 then
for a € {0,1}" do

A= [ﬂ;

g’ =b(A"1,2,n+ 1);
if ¢” > g/2 then
for b€ {0,1}", c € {0,1} do
A// — A b ,
alc

g" =b((ANT,1,2,n+1);

if ¢’ > g then

S =Sur(A”);

Note the interesting fact that 191 = 27 4+ 26 — 1 ¢ Ry, even though [1,2"72 +
2731 C R, is true for all n < 8.

In Table 1 some matrices from Bg and their RSCs are shown. The compact
representation is used: each row is represented by a hexadecimal integer. For
example, the entry 189 : [1 2 C' 14 24 44 84 109 112] represents the equality

000 0 O0O0OO0OTO 071
000 O0O0OO0OO0OT10PO0
000 0O0OT1T1TO00O0
000010100

r{0 0 0 1 0 0 1 0 0 |=189.
001 00O0OT1TO0OPO0
010000100
100 0 0 1 0 01

11 000 1 00 1 0

3. A METHOD TO OBTAIN LOWER BOUNDS FOR a,,

There are cases when the RSC of a matrix can be expressed in terms of the RSC
of some its submatrix. For example, if A # 0 and r(A) = a, then

Aol A 0], A07_,
“lo oY "1 1|74 Yo 1| T
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TABLE 1. Some matrices in By with interesting RSC values.

[EC| A |
122711 2 5 9 14 24 44 84 112
1391 3 6 A 12 22 42 9C 182
1431 2 5 9 30 50 90 114 12A
14911 2 4 9 16 28 48 88 118
1)1 2 5 9 30 50 90 111 126
15511 2 5 C 14 24 46 CO 140
7)1 3 6 C 30 50 68 A0 120
1631 3 6 A 12 22 42 84 182
671 2 4 9 11 2E 60 CO 140
1691 3 C 14 24 46 86 140 184
1731 3 6 18 28 34 50 90 110
17513 5 9 11 22 60 A0 140 181
17913 5 9 11 21 42 82 141 181
1813 5 9 11 21 42 CO 140 181
1831 6 A 12 22 42 84 109 180
1851 2 4 18 28 48 90 110 1EF
8713 5 9 11 21 41 81 106 118
1891 2 C 14 24 44 84 109 112
9711 2 4 8 10 21 7E CO 140
1991 2 C 14 24 44 84 108 1F3
2001 2 C 14 24 44 84 10B 114
2031 2 4 18 28 48 88 110 1E7
2093 5 9 11 21 41 81 102 10D
2113 5 9 11 21 41 81 102 10C
2253 5 9 11 21 41 81 102 105
2271 2 4 8 10 60 A0 140 19F

Combining these simple rules, we obtain that if A # 0, then

A 0O A 0O A 0O
BL)r| 0 1 0|=2a [0 1 0|=2a+1, r|{ 1 1 0 |=2a+2.
0 0 0 1 1 1 0 0 1

Consequently, if there is a matrix A € B,,_o, satisfying r(A) = a, then there are
matrices in B,, with the RSCs 2a, 2a + 1, and 2a + 2. This simple construction
enables to obtain a lower bound for a,,, that is by a constant factor sharper than
that from [5].

Theorem 3.1. Ifn > 9 then a, > 6\/5\/§n - 1.

Proof. The matrices with RSCs 1, 2 and 3 exist if n > 2. Starting from the subset
of B,,—2 with RSCs 2, 3, ..., ap_2 — 1, by (3.1) the matrices in B,, are obtained
with RSCs 4, 5, ..., 2(an—2 — 1) + 2; Therefore, a, > 2a,-2 + 1. Iterating this
inequality, we obtain

an +1>2(an—2+1) > 2%(ap_s+1) >+ > 2(an_ox +1)
for all k, 2k < n. For n = 2m > 8 we have a, > 2™ *(ag +1) -1 = %f\/ﬁn -1,

and for n = 2m + 1 > 9 we obtain a, > 2™ %(ag + 1) — 1 = 6v/2v/2" — 1. In both
cases we have a,, > 6\/§\/§n —1forn>9. O
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Now we show how more equalities of the type (3.1) can be obtained, leading to
better lower bounds of the type a, > v¢", ¢ > V2.

Lemma 3.2. If A has no zero rows and no zero columns then

Qe
Rl

1
=(r(A4)—-2)r(C) +r (1)

r(A)—Q—&-r[%‘%},

—| HO‘:};

I

~
b »—lO‘{L

it s

The upper left 1 on the right hand sides is the 1 x 1 matriz.

[t

Proof. Only the first equality has to be proved. The other three are obtained from
the first by taking C = D =0, C = F =0, and C = D = E = 0, respectively. In
each case, the zero matrices may be left out since they do not affect the cardinality
of the row space.

Let A € By;. Obviously, r(A) > 2; the inequality r(A) > 2 is equivalent to
A # 1px;. The case r(A) = 2 is trivial: it is enough to remove repeated rows and
columns in A, replacing A by 11x1. Suppose therefore r(A) > 2. The matrix A has

no zero columns, and consequently R(A) contains 1-row, i.e. [115; 01]=[101] €
R[A 0 1]. Denote W =R[A 0 1]\ {[0 0 0],[1 0 1]}. Let
Alo 1 lpxi |0 1
B=|0|C D and B = 0 |[C D
1 F F 1 E F

Furthermore, let 7o = R[0 C D], F = R[ (1) g lF) } ,and Fy = F\ Fy. The

first and the third block in elements of F; + W are 1, and the second block is from

c | . .
R { B ], implying

]—'H—WCR[? g ?}+[101]:F+[101]CR(B’).
Therefore,
R(B) = ((F+[000)U(F+[101])U(F+W)=R(BHU(F+W)
(3.2) = R(BHU(Fo+W)U(FL+W)=R(B)U (Fo+W).

The first block in elements of R(B’) is 0 or 1; the first block in elements of Fy + W
is never 0 or 1. Consequently, (Fo + W) NR(B’) = 0 and

r(B) =x(B) + [Fo + WI.
The third block in elements of W is 1; hence, the same is true for all elements of
Fo + W. Therefore
|Fo+W| =|R[0 C D]+ W|=|R[0C 1]+ W|=r(CW| = (r(A) —2)r(C),



ROW SPACE CARDINALITIES 7

implying
(3.3) r(B) =r(B") + (r(A) — 2)r(C).

The first k rows of B’ are identical, and so are the first [ columns. Keeping only
one of these identical rows and columns, we complete the proof of the theorem. [J

According to Lemma 3.2, r(B) linearly depends on r(A), with the multiplier r(C)
(or 1) and with the free coefficient

0

1 1
r| 0 C D 2r(C’)Z[1 0
1 E F

0 C]Qr(C)O.

The rest}raint that A has no zero rows and no zero columns is not critical: if
A0
A= { } , then

0 0
/
A 0 1 Aoggi A0 1
B:rOC’D:rOOC,D:rOC"D’7
/
1 F F TT1 ETF 1 E F

0 C
apply Lemma 3.2 to the matrix B.
The statement of Lema 3.2 can be reformulated. Let A € By; be a matrix with
no zero rows and no zero columns; let x € B,1, y € Byg, and

where C' = [ 00 ], D = [ é ], and E' = [1 E]. This makes it possible to

A B Y

G—[C D]’ C=lzz - 2z], B=

Y
If £ # 1,41 and y # 11«5, and F' is the matrix obtained from D by eliminating the
rows corresponding to ones in x and the columns corresponding to ones in y, then

H(6) = () - u(F) x| LB .

Otherwise, if If x = 1,1 or y = 11«5, then

r(G)zr(A)—Q—Hf[i ]?ﬂ

Example 3.3. If A has no zero rows and no zero columns and r(A) = a # 0, then

Alo 0]1 1[0 01
0(0 1]0 0 1 00 10
"lol1 1o (r(A)Q)”{l 1]“ 0[1 10
T[T 01 T[T 01

— (2(A)—2)*3+7=3a+1.
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Similarly,

= 3a + 2.

] k=)

=3a, T

—lo o
== OoOlo
—lo o
== OoOlo
el e el K]
OO ==

= O O

1

This is not quite a random set of examples: it is similar to (3.1); it can be further
generalized. Let m > 2, a > 1, b > a — 1 and suppose that for each ¢, 0 < ¢ < b
there exists a matrix

Voo = | e Bt [ B
such that
Al o 1
r| 0| Csc Dge | =ar(d)+c
1 Ea,c Fa,c

for all A € B,,, A without any zero rows or columns. We will call a collection
{Ua,c | 0 <c<b} an (m,a,b) system.

We now prove that the existence of an (m,a,b) system implies the existence of
a lower bound of a,, of the form ¢ §/a".

Theorem 3.4. Let m > 2. Suppose that for some a > 1, b > a — 1 there exists
an arbitrary (m,a,b) system. Suppose that for some k > 2 we have a;, > 2a. Let

a=0b+1-a)/(a—1), = a, and
’y:min{(akﬂ—i—a)q*(k“‘) |0 §i<m}.
Then for all n > k we have a,, > vq" — «.

Proof. The inequalities apy; > v¢**" —a, 0 < i < m, follow from definition of
v, i.e. the statement of the theorem is true for m consecutive integers i = k, k +
1,...,k+m — 1. Suppose the claim is true for all n, k <n < N (N > k+m — 1),
and let n = N.

From aj; > 2a and n > k it follows [1,2a — 1] C R,,.

Let A, € B,_.,, be square matrices satisfying r(A4;) = i, 2 < i < ap_p — L.
Without the loss of generality, we can suppose that A; are without zero rows and
zero columns: an arbitrary matrix A # 0 with zero rows and/or zero columns can be
replaced with A, r(A) = r(A4’), obtained from A by replacing zero rows (columuns)
by copies of some non-zero rows (columns). Let

_ Ca,c Da,c
Uae = { Eue Fo.

be the matrices contained in an (m, a,b) system. Then

], 0<c<h,

an—m—1 b Al ‘ 0 1 an—m—1 b
U U r| 0 |Cac Do = U U {ia + ¢} = [2a,aap_m, + b — a],
i=2 =0 1 a,c a,c i=2  ¢=0

implying [2a, aap—mm + b —a] C R, and
(3.4) Gp > Ay, +b—a + 1.
From the inductive hypothesis it follows

anZa(’yq"_m—a)—l—b—a—i—l:'yq"—a.



ROW SPACE CARDINALITIES 9

TABLE 2. The triplets (m,a,b) for which we found (m, a,b) systems.

[m] af bllg=Wala="05"]
2 2 2 || 1.41421 1
3 3 4 || 1.44225 1
4 6 6 || 1.56508 1/5
5| 10| 10 || 1.58489 1/9
6| 18| 18| 1.61887 1/17
7] 30| 32 1.62561 3/29
8| 56| 60 || 1.65395 1/11
9102|114 || 1.67177 13/101
10 | 193 | 218 || 1.69261 13/96
11| 336 | 350 || 1.69694 3/67
Therefore, the theorem is proved by induction. O

If we cannot determine a,, for some n, then it is useful to know any lower bound
an < Q.

Note. The condition a, > 2a is not crucial, because by Theorem 3.1 it is
satisfied for all n > 2log,((2a + 1)/(6+/2)). Therefore, the existence of a (m,a, b)
system implies the lower bound of the form a, > v %/a" — «. The constant v is
estimated using m consecutive lower bounds a, < a,; if we replace ax4+; by @p4i
in the definition of +, we obtain a lower bound worse only by a constant factor.
In the next section we demonstrate how to find good lower bounds a, using a
generalization of Lemma 3.2.

From Lemma 3.2 we see that the coefficient a = r(C') depends only on the matrix
C. In order to search for an (m,a,b) system, for given a and m, we start from a
set of matrices C, satisfying r(C') = a. To reduce the search space, it is chosen to
search for C' among matrices of order m — 1, i.e. E is a row, and D is a column
vector. By varying matrices D, E and F, some set of coeflicients ¢ is obtained,
possibly constituting a complete (m,a,b) system if b > a — 1. In Table 2 the
triplets (m, a,b) are shown, for which we found (m,a,b) system, 2 < m < 11. The
triplets are accompanied by ¢ = %/a and @ = (b+ 1 —a)/(a — 1). The best lower
bound is obtained for (m,a, b) = (11, 336, 350).

The part of (m,a,b) systems mentioned in Table 2 for m < 6, is shown in
Table 3. The rows of U, . are represented by hexadecimal numbers, as in Ta-
ble 1); dimensions of C,. are 1 x 1. The matrices from Example 3.3 are the
part of the (3,3,4) system from Table 3. All the systems found can be seen at
http://www.matf.bg.ac.yu/ ezivkovim/RSC.htm.

Combining inequalities (3.4) for all triplets (m, a,b) from Table 2, we obtain the
inequality

an, > max{2a,—2+1,3an-3+2,6a,-4+1,10a,,_5 + 1,18a,—¢ + 1,30a,—7 + 3,
(3.5)  56a,_s+5,102a,—9 + 13,193a,_10 + 26, 336a,,—11 + 15}

which is satisfied if n > 2log,((2 * 336 + 1)/(61/2)) (implying a,, > 2 * 336 = 672),
le. if n > 13.
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TABLE 3. Example (m,a,b) systems, 2 < m < 6.

H Us,c in (2,2,2) system H

Us,c in (6,18, 18) system

(6,
8
8
8
8
8
8
8
8
8
8
8
9
8
8
8
8
8
9
8

10
10
10
10
10
10
10
10
10
10
11
10
10
11
10
11
10
11
11

2E
2E
2E
2E
2E
2E
2E
2E
2E
2E
2E
2E
2E
2E
2E
2E
2E
2E
2E

3F
3D
2D
39
2E
3C
29
31
38
32
28
30
2
30
21
30
22
20
20

< c

0142 3 0 2 2

1 3 2 1 2 4

2 2 0 9 9 4
H c “ Us,c in (3,3,4) system H 32 4

0of2 6 7 4 13 4

1 2 6 5 5 3 4

2|13 6 6 6 ||2 4

33 6 2 7102 4

413 6 4 813 4
[ ¢ [ Uicin(4,6,6) system || 913 4

T AT 2 4

112 4 A D 1213 4

2 2 4 A 9 1313 4

3113 4 A E ullo 4

413 4 A A 15112 4

513 4 A C 613 4

6 |3 4 A 2 173 5

¢ || Us, in (5,10, 10) system 1813 5

02 4 8 16 1F

1 2 4 8 16 1D

2 2 4 8 16 15

312 4 8 16 19

4113 4 8 16 16

513 4 8 16 1C

6 2 4 8 16 11

713 5 8 16 18

83 4 8 16 18

9(3 5 9 16 10

1012 4 9 16 10

4. MORE GENERAL CONSTRUCTION AND IMPROVED LOWER BOUND FOR a,,

We now give a generalization of Lema 3.2. Using this statement, we obtained
fairly large subsets of R,, and sharp lower bounds a,, < a,, n < 27.

Theorem 4.1. Let

A, 0 -+ 0 | By
0 Ay -+ 0 | By
B = :
0 0 Ay | By
Cy Cy Cy \ D

If A; has no zero rows and no zero columns, and if the matriz C; has constant rows
(i.e. columns with all elements identical) and if the matriz B; has constant columns,
1 <i <k, then v(B) is a multilinear function (i.e. polynomial with exponents not
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exceeding 1) in terms of r(A1), r(Asg), ..., r(A4x):

k
r(B) =Y a; [[r(4)", a5 <L
j=1

i

Proof. We proceed by induction on k. The case k = 1 is a consequence of Lemma 3.2.
Suppose now k > 1. Let B, denote the matrix obtained from B; by removing
columns corresponding to 1-columns of By, 2 < i < k; if By = 1, then B; and D’
are "empty” matrices (matrices with no columns). Analogously, let C! denote the
matrix obtained from C; by removing rows corresponding to 1-rows of C1, 2 < i < k;
if 4 =1, then C} and D’ are ”empty” matrices (matrices with no rows). Applying
reformulated Lemma 3.2 to B and permuting rows and columns, we get

Ay 0 --- 0 | B Ay -+ 0 | By 0
0 Az--- 0 | B} , .
r(B) = (r(A) =2)r | o Tl 0 A | By 0
0 0--Ag| B, Cy ~-Cp| D 0
CyCL--- Cp | D 0 ---01]0 1

By the inductive hypothesis we conclude that RSCs of these two matrices are (mul-
tilinear) polynomials depending on r(As),. .., r(Ax) — completing the proof. O

From the proof it is seen how the expression for r(B) can be effectively obtained.
We now consider some special cases of Theorem 4.1. We suppose that D € B, is
quadratic, and consider the cases m = 0,1,2,3 and m > 3.

The case m = 0: Obviously,

(4.1) r [ Ar 0

0 A2 :| = I‘(Al) * I'(AQ).

The case m = 1: Consider the matrix

0
Ao

(4.2) By = o
0

)—‘OO}

0

1
311
| D
and all the 7 matrices obtained from B; by deleting the rows and columns with the
indices from the same subset of {1,2,3}. In Table 4 the polynomials are shown,
expressing RSCs of these matrices in terms of r(A;) = b, r(A2) = ¢, r(A3) = d.
For example, if D = 0 and we delete the row and column corresponding to A,
then RSC of the matrix obtained is equal to 1+ bd = 1 + r(A;)r(As). Note that
some of these polynomials are equivalent, (they can be made identical by renaming

variables). There are here 5 substantially different polynomials: 1+ d, be, 1 + bd,
bed, 1+ bed.

»—‘D>OC>
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TABLE 4. RSCs of submatrices of By (4.2).

H Included blocks H D=0 \ D=1 H

Al, AQ, Ag 1+ bed | bed
Al, A2 be 1+bC
Ay, As 1+bd | bd
Ay b 1+5b
AQ, A3 ].-|—Cd cd
A2 C 1+4+c¢
As 1+d |d

TABLE 5. 1(Bs) (4.3) for various D € BJ.

H D H r(Bs) — abede f ghijklmno H
14+a+b+d—+ ade+ bdf + h + ahi + bhj
a+ d+ ade + bdf + ahi

a + ade + ahi

ade + bhj

ade

0

W= = O oo

W wWwN WO

The case m = 2: Now we consider all 2! — 1 submatrices of
[ A 00

Ag 00

Az 00

A, 01

Ag 01

Ag 01

Az 01

Ag 10

(4.3) By = Ao 10

A 10

A 10

Aio 10

Ais 11

Ay, 11

A5 |11

o 1 1 0 0O 1 1 0 O 1 1 0 0 1 1 D
1 010 1 01 O 1 O 1 O 1 0 1

where D € B. In Table 5 the 6 polynomials, corresponding to various D € B] are
shown with r(A4;), 1 <14 < 15, substituted by a,b,...,n respectively.

As in the previous case, a broader polynomial family is obtained by deleting
rows and columns with the indices from the same set {1,2,...,15}. The set of
32767 = 2'® — 1 polynomials is reduced by removing equivalent polynomials to a
smaller set of 8534 polynomials.

The case m = 3: Considering this case analogously to the previous case is
impossible, because there are 263 — 1 submatrices. Therefore, we decided to start
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from the following matrix containing 9 diagonal blocks, hoping that representative
enough polynomials set will be obtained.

(4.4) B

Ay

A

As

001 ]
001
001
010
010
010
100

100
100

D

= O O
o = O
= O O

1
0
0

o = O
o O =
= O O
o = O

1
0
0

Again we computed RSC for each of 2° — 1 submatrices of Bz and for each of 37
"kernels” D € Bj. After removing equivalent polynomials, we are left with 10357
new polynomials. In Table 6 only the polynomials corresponding to the complete
matrix Bs are shown.

The case m > 3: Here we considered only matrices with only one diagonal
block. As a special case, we obtain various (m, a,b) systems.

Data base containing all polynomials can be found at

http://www.matf.bg.ac.yu/ ezivkovm/RSC.htm. These polynomials are used in
Algorithm 4.2 to obtain matrices with various RSCs for n < 27.

Algorithm 4.2. Generate a subset of R], C R,, starting from a collection P of
polynomials and from the subsets R; C R;, i < n.
Input :

n — integer,

P — collection of polynomials,

subsets R, C R;, 1 <i < n.
Output : subset R, C R,.

R «— 0

for m=0,11

for k=1,15
forallpe P
for all partitions n =m + z1 + 29+ -+ - + X

for all vy € R}, ,v2 € R, ..., v € R,
R — RU{P(v1,v2,...,u)};
; retain m, k, p, x1,T2, ..., Tk, U1,V2,..., Uk

; in order to reconstruct later of the matrix with this RSC
Rl — R;
Because for large n this starts to be time consuming, the following heuristic is
used:

e For n < 22 the complete collection P is used.

e A subcollection P’ is formed, containing all polynomials of degree less than
5, and polynomials of degree at least 5 which resulted in finding at least
one new RSC for n < 22,

e For 23 < n < 27 the collection P’ is used instead of P.
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TABLE 6. r(Bs) (4.4) for various "kernels” D.

D

H r(B3) — abede f ghi

|

0

134+a+b+ab+c+ac+bc+d+ ad+ e+ be + de + abde + f + cf + df +
acdf +ef +bcef + g+ ag + dg + h + bh + eh + gh + abgh + degh + i+
ci+ fi+ gi + acgi + df gi + hi 4 bchi + efhi

6+a+b+ab+c+ac+bc+ d+ ad+ be + de + abde + cf + df + acdf+
beef + g+ ag + dg + bh + gh + abgh + degh + ci + gi + acgi + df gi + bchi

34+a+ab+ ac+ d+ ad+ de + abde + df + acdf + g + ag + dg + gh+
abgh + degh + gi + acgi + df gi

34+a+b+ab+ c+ ac+ bec+ ad + be + abde + cf + acdf + beef + ag+
bh + abgh + ci + acgi + bchi

0

4+ a+ab+ac+ d+ ad+ be + de + abde + cf + df + acdf + beef + g+
ag + dg + gh + abgh + degh + gi + acgi + df gi

1+ ad + be + abde + cf + acdf + beef

44+ a+b+ab+ c+ ac+ bc+ ad + be + de + abde + cf + acdf + beef+
ag + bh + gh + abgh + degh + ci + acgi 4 bchi

1+ ab + de + abde + gh + abgh + degh

o

w

2 4+ ab+ ad 4 be + de + abde + cf + acdf + beef + gh + abgh + degh

o

—

[\

2+ a+ab+ ac+ ad + e + be + de + abde + cf + acdf + ef + beef+
ag + eh + gh + abgh + degh + acgi + efhi

14+ a+ ab+ ac+ ad + de + abde + acdf + ag + gh + abgh + degh + acgi

1+ a+ ab+ ac+ ad + be + abde + cf + acdf + beef + ag + abgh + acgi

a+ ab+ ac+ ad + abde 4 acdf + ag + abgh + acgi + efhi

abde

Ol W|l O

= | = =] =

W W

24+ a+ ab+ ac+ ad + be + de + abde + cf + acdf + beef + ag + gh+
abgh + degh + acgi

14+ a+ ab+ ac + ad + de + abde + acdf + ag + eh + gh + abgh+
degh + acgi + efhi

w

N

14 ab + ad + de + abde + acdf + gh + abgh + degh

[

[

[\V]

1+ a+ab+ ac+ ad+ be + abde + cf + acdf + ef + beef + ag+
abgh + acgi + efhi

1+ ab+ ad + be + abde + cf + acdf + beef + abgh

a+ ab+ ac+ ad + abde 4 acdf + ag + abgh + acgi

ad + abde + acdf

ab + abde + abgh + fi+ dfgi + efhi

ab + abde + abgh

14 ab+ ad + de + abde + acdf + bh + gh 4 abgh + degh + bchi

ad + abde + acdf + bchi

1+ ab+ ad + be + abde + cf + df + acdf + beef + abgh + df gi

ab + abde + abgh + df gi

ab + ad + abde + df + acdf + bh + abgh + fi + df gi + hi + bchi 4 efhi

ab + ad + abde + df + acdf + abgh + df gi

ab + ad + abde + acdf + bh + abgh + bchi

ab + ad + abde + acdf + abgh + efhi

abde + acgi

ab + ad + abde + df + acdf + bh + abgh + df gi + bchi

ab + ad 4 abde + acdf 4+ abgh

B N e I e I R = R R N R

I WINOW W NN DWW IO W —|w

N[ U T[] [ || WO U [ | | w

1+ a+ab+ ac+ ad+ be + abde + cf + acdf + ef + beef + ag+
abgh + acgi + efhi

abde 4+ acgi + efhi
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TABLE 7. The lower bounds @, < a, and |R,|, n < 27;if n <9
then R, =R, and a, = ay.

H

an [ Rl ] an | IR

3 2| 15 7537 10024

) 4 16 14009 18890

7 717 24479 35505
11 12 ]| 18 46583 66643
19 21 || 19 81655 124834
35 38 || 20 146939 232602
61 69 || 21 257759 432531
109 | 126 || 22 488689 806104
191 | 232 23 962011 | 1508565
10| 363 | 429 | 24 | 1759611 | 2835495
11| 685 | 799 | 25 | 3136799 | 5348392
12| 1235 | 1494 || 26 | 6019681 | 10115206
13| 2271 | 2808 || 27 | 11752769 | 19163066
14| 3959 | 5309

© 00O U WN S

In Table 7 the lower bounds @, < a,, and the sizes |R],| < |R,| are shown,
n < 27. Data retained in Algorithm 4.2, sufficient to reconstruct matrices with
these RSCs, can be found at http://www.matf.bg.ac.yu/ ezivkovm/RSC.htm.

In Table 8 the lower bounds a,, 28 < n < 54 obtained by (3.5) are shown. In
order to get a rough picture of the growth rate of a,, the values log, a,, — 0.865n
are also shown in Table 8. The constant ¢ = 0.865 is chosen so that log, @, — cn
is close to zero as long, as possible. It turns out that after n = 27 this difference
sharply falls down.

An interesting open question remains about the exact asymptotic of a,. Accord-
ing to Table 8, it seems that it is possible to find new (m, a, b) systems, with larger
q= %a.

Now we give a good lower bound for a,.
Theorem 4.3. Ifn > 31 then a, > 5 V336 .

Proof. This is a consequence of Theorem 3.4, based on a (11, 336, 350) system from
Table 2 (http://www.matf.bg.ac.yu/ ezivkovin/RSC.htm). Let ¢ = %/336. For
k = 31 we have by the values of a,, listed in Table 8

v > min {(asi4; + @)g ' 7|0 < i <10} =7 = (Gg9 + a)g~ > > 5,

and therefore, because of 4 ~ 5.008486 and (¥ — 5)¢3! ~ 111783.8, which is greater
than a, we get

an > 3¢" —a=5¢"+ (7 —5)¢" —a >5¢" + (7 —5)¢*" —a >5¢", n>3l

5. THE SET R,, N (2772 +2n=3 2n~1]

The construction based on Theorem 4.1 made it possible to move towards ex-
tending the Konieczny result [4] from (2771, 2"] to the interval (272 4 27=3 2n~1],
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TABLE 8. The lower bounds a,, < a,, n < 54.

logy @ logy an

n a, | —0.865n n a, | —0.865n
1 3 0.7200 || 28 12039363 | -0.6987
2 5 0.5919 || 29 23505539 | -0.5985
3 7 0.2124 || 30 36118087 | -0.8438
4 11| -0.0006 | 31 70516615 | -0.7435
5 19 | -0.0771 || 32 117527691 | -0.8716
6 35| -0.0607 || 33 211549843 | -0.8886
7 61 | -0.1243 || 34 352583073 | -1.0166
8 109 | -0.1518 || 35 658155069 | -0.9811
9 191 | -0.2076 || 36 1198782451 | -0.9811
10 363 | -0.1462 || 37 2268284443 | -0.9260
11 685 | -0.0950 || 38 3948930399 | -0.9912
12 1235 | -0.1097 || 39 4536569053 | -1.6560
13 2271 | -0.0959 || 40 7897861119 | -1.7212
14 3959 | -0.1591 || 41 13609706721 | -1.8011
15 7537 | -0.0952 || 42 23693582655 | -1.8662
16 14009 | -0.0659 || 43 40829119975 | -1.9461
17 24479 | -0.1257 || 44 71080747263 | -2.0113
18 46583 | -0.0625 || 45 127023928813 | -2.0387
19 81655 | -0.1177 || 46 231365013199 | -2.0386
20 146939 | -0.1351 || 47 437778897525 | -1.9836
21 257759 | -0.1893 || 48 762143572863 | -2.0487
22 488689 | -0.1314 || 49 1326840614079 | -2.1139
23 962011 | -0.0193 || 50 1524287201823 | -2.7787
24 1759611 | -0.0132 || 51 2653681335999 | -2.8439
25 3136799 | -0.0441 || 52 4572861458271 | -2.9238
26 6019681 0.0313 || 53 7961043772095 | -2.9889
27 || 11752769 0.1315 || 54 || 13718584311615 | -3.0688

Theorem 5.1. Let

Az =

As
"

5 =

A

|A| =n? —Tn+ 14 +

holds forn > 1.

{2/ 10<i<n-—4},
Ay = {2142 |0<j<i<n—4},
{20428 4ok |0<k<n—6, k+2<i<n-—4},

{20420+ 2% | n>11, 1 <k <n-10,

kE+2<j<min{i—1,n+k—5—1i},

0,

2" 4 2m73 1 (A3 U Ay U AL U AY).

Then A C R, and

n>11

n<l11

(n —8)(n —10)(2n — 15) 4+ 3(n mod 2)

24

i
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Proof. Denote by T,, the lower triangular matrix from 5,,. For 0 < i < n — 4 we
have

T 0 0 O

0 I,z 0 0| ; n—3—i _on=2 | on—=3 | oi
o I B G B e R LR

0 0 0 I;

and so 272 42" 3 4+ A3 C R,
Consider the matrices

A1 0 000 A1 0 0101 %lj 8 8}58

0 Ay 010 0 Ay 0 ]01 0 02A 0101
Bi=|0 0 As[11|, Bi=|0 0 Az]10|, B = ’

0 04511 00 0 Agl01

0 0 100 0 1 1100 100 0][10

10 001 00 0]11 010 1]10

Let (A1) = a, r(As) = b, r(As) = ¢, r(A4) = d. Applying recursive procedure from
the proof of Theorem 4.1 we obtain

r(By) = abc+ab+b+1,
r(BY) = abc+ab+a+c+1,
r(BY) = abed+ abe+a+b+d.

Inequalities 0 < j < ¢ < n —4 are equivalent ton—71—-3>1,i—35>1,5 > 0.
After replacing Ay, As, A3 in By by I,_s_;, I;—;, I1, respectively, and by adding
diagonal block I; (if j > 1), we obtain

Inss 0 00 0]0
0 IL; 0|1 0|0
0 0 L |1 1]0 _ oi(on—2—j | on—3—j L oi—j
"m0 0 1jo oo | T FETTIETTezAD
1 0 00 1|0
0 0 00 0]F

— 277,72 _|_2n73 4 2’L _|_2J
Therefore, 2772 + 273 + A, C R,.
Inequalities 0 < k< k+1<i<n—4areequivalent toi —k>2,n—1—3>1,
k > 0. After replacing Ay, As, Az in Bi by I;_j, I,—;—3, I1 respectively, and by
adding diagonal block I (if k¥ > 1), we obtain

L, 0 0]0 1]0

0 I,is 0[]0 1]0

0 0 L1 0]0 _ ok(on—2—k | on—3—k | oi—k
g - oot | = e +2 +27F L 24 1)

0 0 o1 1|0

0 0 0]0 0

— 27L—2 + 271—3 +21 + 2k+1 + 2/6.

Therefore, 2772 + 2773 + AL C R,,.

Inequalities defining AY are redundant: from k+2 < j <min{i—1,n+k—5—1i}
it follows k4+2 <i—1and k+2 < n+ k — 5 —i; adding these two inequalities, we
obtain n — 10 > k; finally, n > k + 10 > 11. Each triple (i, j, k) from the definition
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of AY satisfies i —k+1>3,j—k+1>3,n+k—i—j—4>1,k—1>0. After
replacing Ay, Aa, Az, As in BY by Ii_pi1, Ij—gt1, Intk—i—j—a, 11, respectively,
and by adding diagonal block I}_; (if K — 1 > 1) we obtain

[ Lig O 0 01 0] 0 ]
0 I gn 0 00 0| o
0 0  Inyhija 0|0 1] 0
r| 0 0 0 Lo 1] 0
1 0 0 0[1T 0] O
0 1 0 11 0| 0

0 0 0 00 0T |

— 2/()_—1(271—1—/6 + 2n—2—k + 2i—k+1 + 2j—k+l + 2)
2n2 4 2n8 4 0t 4 27 4 ok,
Therefore, 272 +2"=3 + AY C R,,. The matrix above is defined if n > 9, but we
require n > 11 in order to make the sets Aj, A4, AL and AY disjoint. Putting all
this together, we see that A C R,,.
Obviously, |As| =n — 3, |A4] = (n —3)(n —4)/2, and |A;| = (n —4)(n — 5)/2.
By a little more complicated enumeration,

A = (n—8)(n —10)(2n — 15) + 3(n mod 2)
o 24 ’
and so |A| = |As| + | A4| + |A5| + | AZ| is obtained. O

Comparing this with [4], we see that R, N (2"~ !,2"] consists of integers with
exactly two binary ones, while R,,N (27724273 2"~ consists (at least) of integers
with 3 or 4 binary ones, and some integers with 5 binary ones (more precisely, the
integers 2" 242773420427 4-2F satisfying 0 < k <n—6,j = k+1, k+2<i<n—4
or1<k<n-10,k4+2<j<min{i—1,n+k—5—1i}).

Because of good agreement with [5], we can state a

Hypothesis: R, N (2772 + 2773 2n71] = A.
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