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ON Q–INTEGRAL (3, s)–SEMIREGULAR BIPARTITE

GRAPHS

Slobodan K. Simić, Zoran Stanić

A graph is called Q–integral if its signless Laplacian spectrum consists entirely
of integers. We establish some general results regarding signless Laplacians
of semiregular bipartite graphs. Especially, we consider those semiregular
bipartite graphs with integral signless Laplacian spectrum. In some particular
cases we determine the possible Q–spectra and consider the corresponding
graphs.

1. INTRODUCTION

Let G be a simple graph with adjacency matrix A (= AG). The eigenvalues
and the spectrum of A are also called the eigenvalues and the spectrum of G,
respectively. If we consider a matrix Q = D + A instead of A, where D is the
diagonal matrix of vertex–degrees (in G), we get the signless Laplacian eigenvalues
and the signless Laplacian spectrum, respectively. For short, the signless Laplacian
eigenvalues and the signless Laplacian spectrum will be called the Q–eigenvalues
and the Q–spectrum, respectively. We say that a graph is Q–integral if its signless
Laplacian spectrum consists entirely of integers.

Let R (= RG) be the n×m vertex–edge incidence matrix of G. Denote by L(G)
the line graph of G (recall, vertices of L(G) are in one–to–one correspondence with
edges of G, and two vertices in L(G) are adjacent if and only if the corresponding
edges in G are adjacent). The following relations are well known (see, for example,
[2]):

RRT = AG + D, RT R = AL(G) + 2I.
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From these relations it immediately follows that

(1) PL(G)(λ) = (λ + 2)m−nQG(λ + 2),

where QG(λ) = det(λI −Q) is the characteristic polynomial of the matrix Q.

The integral graphs are well studied in the literature. On the other hand,
the graphs with integral Q–spectrum are studied in [4], [5], [8], [9] and [10], so
far. Here we extend those results. Since Q–matrices are positive semidefinite the
Q–spectrum consists of non–negative values. Furthermore, the largest eigenvalue
of the signless Laplacian of a connected graph is a simple eigenvalue, while the least
eigenvalue of the signless Laplacian of a connected graph is equal to 0 if and only
if the graph is bipartite; in this case 0 is a simple eigenvalue (see [2], Proposition
2.1).

Recall that L = D − A usually denotes the Laplacian matrix (of G). It is
well known that if G is a bipartite graph then its Laplacian and signless Laplacian
spectrum coincide (the proof can be found in many places, see [6], for example). In
particular, a bipartite graph is L–integral if and only if it is Q–integral. Further-
more, since in this paper we deal with bipartite graphs only all results hold even if
we consider Laplacian instead of signless Laplacian spectrum.

2. PRELIMINARIES

In this section we mention some results from literature in order to make the
paper more self-contained. Recall that for an arbitrary edge of a graph G, the edge–
degree is the number of edges adjacent to it. Also, we say that G is edge–regular if
its edges have the same edge–degree. Further, an (r, s)–semiregular bipartite graph
is a bipartite graph whose each vertex in the first (resp. second) colour class has
degree r (resp. s). It is easy to check that a connected graph is edge–regular if and
only if it is either regular or semiregular bipartite.

Following [8], [10] and [9], we list some results regarding Q–integral graphs.
All Q–integral graphs with maximum edge–degree at most 4 are known; exactly
26 of them are connected. All Q–integral (2, s)–semiregular bipartite graphs are
determined (that is the infinite series) as well as all (r, s)–semiregular bipartite
graphs with r + s = 7 and r < 3 < s; exactly 3 of them are connected. In addition,
all possible Q–spectra of connected (3, 4) and (3, 5)–semiregular bipartite graphs
are determined, and all the graphs having some of these Q–spectra are identified.
Finally, all Q–integral graphs up to 10 vertices are known; exactly 172 of them are
connected.

Now we list some notions and results to be used later on (see [2], Section
4; especially Theorem 4.1 and Corollaries 4.2 and 4.3). A 1

2
–edge walk (of length

k) in a graph G is an alternating sequence v1, e1, v2, e2, . . . , vk, ek, vk+1 of vertices
v1, v2, . . . , vk+1 and edges e1, e2, . . . , ek such that for any i = 1, 2, . . . , k the vertices
vi and vi+1 are end–vertices (not necessarily distinct) of the edge ei. Let Q be the
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signless Laplacian of a graph G. Then the (i, j)–entry of the matrix Qk is equal
to the number of 1

2
–edge walks starting at vertex i and terminating at vertex j.

Let Tk =
nX

i=1

µ k
i , (k = 0, 1, . . .) be the k–th spectral moment for the Q–spectrum

(here µ1, µ2, . . . , µn are the Q–eigenvalues of G). Then Tk is equal to the number
of closed 1

2
–edge walks of length k. In particular, if G has n vertices, m edges, t

triangles, and vertex–degrees d1, d2, . . . , dn, then

T0 = n, T1 =
n∑

i=1

di = 2m, T2 = 2m +
n∑

i=1

d 2
i , T3 = 6t + 3

n∑

i=1

d 2
i +

n∑

i=1

d 3
i .

Finally, if G is an (r, s)–semiregular bipartite graph which contains q quadrangles
and h hexagons then for the spectral moments Tk (k = 4, 5, 6) we have (cf. [8],
Lemma 3.2)

T4 =
(
r3 + s3 + 4(r2 + s2) + 2(r + s) + 4rs− 2

)
m + 8q,

T5 =
(
r4 + 5(r3 + r2 − r) + s4 + 5(s3 + s2 − s) + 5rs(r + s + 2)

)
m + 20(r + s)q,

T6 =
(
r5 + s5 + 6(r4 + s4) + 9(r3 + s3)− 7(r2 + s2)− 6(r + s + rs) + 6rs(r2 + s2

+rs) + 21(r2s + s2r) + 4
)
m + 12

(
3(r2 + s2) + 2(r + s) + 4rs− 4

)
q + 12h.

3. MAIN RESULTS

Before we proceed to the next lemma we emphasize the following formula.
If G is a semiregular bipartite graph with n1 (resp. n2) vertices in the first (resp.
second) colour class (n1 ≥ n2), then the relation

(2) PL(G)(λ) = (λ− r + 2)n1−n2(λ + 2)` ·
n2∏

i=1

(
(λ− r + 2)(λ− s + 2)− λ 2

i

)

holds (compare [3], Proposition 1.2.18), where λ1, λ2, . . . , λn2 are the first n2 largest
eigenvalues of G, while each vertex of the first (resp. second) colour class has degree
r (resp. s) and ` = n1r1 − n1 − n2.

Lemma 3.1. Let G be an (r, s)–semiregular bipartite graph with n1 (resp. n2)
vertices in the first (resp. second) colour class (n1 ≥ n2). Then its Q–spectrum lies
in [0, r] ∪ [s, r + s].

Proof. First, n1 ≥ n2 implies r ≤ s. Further, having in mind relations (2) and (1)
we get

(3) QG(λ) = (λ− r)n1−n2 ·
n2∏

i=1

(
(λ− r)(λ− s)− λ 2

i

)
,

where λi (i = 1, 2, . . . , n2) are defined above. Since the Q–eigenvalues are real, we
have (λ− r)(λ− s) ≥ 0, and the proof follows. ¤
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Note that formula (3) appears in [4], as well. By putting λ1 =
√

rs into (3),
we get the least and the largest Q–eigenvalue: 0 and r + s, respectively. It is easy
to see that the spectrum of G contains at least n1−n2 eigenvalues equal to 0. The
Q–eigenvalue r appears whenever G is not a regular graph, while the Q–eigenvalue
s appears whenever the eigenvalue 0 has multiplicity strictly grater than n1 − n2

(in the spectrum of G).
Denote by multQ(µ) the multiplicity of the signless Laplacian eigenvalue µ of

an arbitrary graph G. Now we have the following lemma.

Lemma 3.2. Let G be a connected (r, s)–semiregular bipartite graph with n1 (resp.
n2) vertices in the first (resp. second) colour class (n1 > n2). Let µ1 = 0 < µ2 <
· · · < µk = r + s be the distinct Q–eigenvalues of G different from r and s. Then
we have multQ(µi) = multQ(µk+1−i)

(
i = 1, 2, . . . ,

k

2

)
. In addition, if α denotes the

multiplicity of zero in the (adjacency) spectrum of G, then multQ(r) = α + n1 − n2

2

and multQ(s) = α− n1 + n2

2
hold.

Proof. Since the spectrum of a bipartite graph is symmetric about zero, one can
easy conclude that k and α ± n1 ∓ n2 are even numbers. Further, the equalities
multQ(µi) = multQ(µk+1−i)

(
i = 1, 2, . . . ,

k

2

)
follow from (3).

Finally, since α ≥ n1 − n2 holds, exactly α− n1 + n2

2
of n2 largest eigenvalues of

G are equal to zero. Substituting λi = 0 (i = α− n1 + n2

2
, . . . , n2) into (3), we get

multQ(r) = α + n1 − n2

2
and multQ(s) = α− n1 + n2

2
. The proof is complete. ¤

The following simple consequence deserve the attention.

Corollary 3.1. The Q–spectrum of an (r, s)–semiregular bipartite graph with the
Q–eigenvalues r and s excluded is symmetric about r + s

2
.

Proof. The proof follows from the previous lemma and the relation (3). ¤

In the following theorems we consider the Q–spectra of connected Q–integral
(3, s)–semiregular bipartite graphs. Since all such graphs with s ≤ 3 are deter-
mined, while the cases s = 4 and s = 5 are considered in [8] and [9] (see also the
previous section), we can assume that s > 5. From Lemma 3.1 we get that such
graphs could have the following Q–eigenvalues: 0, 1, . . . , r, s, 1 + s, . . . , r + s. We
have multQ(0) = multQ(r + s) = 1. Due to Lemma 3.2, we can denote multQ(i) =
multQ(r+s−i) = ai (i = 1, 2, . . . , r−1) and multQ(s) = as,multQ(r) = n1−n2+as.

Theorem 3.1. Let G be a connected Q–integral (3, s)–semiregular bipartite graph
(s > 5) with n vertices, m edges, q quadrangles and h hexagons. Then the following



On Q–integral (3, s)–semiregular bipartite graphs 171

equalities hold (we use the notation above):

a2 =
(s− 1)(s− 4)a1 + 3s(s− 1)− 2q

2(s− 2)
,(4)

as =
a1 + q − 3

s− 2
− q

s
− 1,(5)

m =
s
(
a1(s− 1) + 3(s + 1)

)

2
,

h =
s(s− 1)

(
(s− 7)a1 + 9(s + 1)

)− 2(s + 7)q
6

.

Proof. We get:

(6) n1 =
m

3
, n2 =

m

s
, n = n1 + n2 =

(3 + s)m
3s

,

where n1 (resp. n2) is the number of vertices of degree 3 (resp. s). By using the
formulas for the spectral moments Tk (k = 0, 1, . . . , 6) (see Section 2) and having in
mind the equalities (6), we arrive at the following system of Diophantine equations:

2a1 + 2a2 + (s− 3)m

3s
+ 2as + 2 = (s + 3)m

3s
,

(s + 3)a1 + (s + 3)a2 + 3
(

(s− 3)m

3s
+ as

)
+ sas + 3 + s = 2m,

(
1+ (s+2)2

)
a1 +

(
4+ (s+1)2

)
a2 +9

(
(s− 3)m

3s
+as

)
+ s2as +(3+ s)2 = (5+ s)m,

(
1+(s+2)3

)
a1+

(
8+(s+1)3

)
a2+27

(
(s− 3)m

3s
+as

)
+s3as+(3+s)3 = (18+s2+3s)m,

(
1 + (s + 2)4

)
a1 +

(
16 + (s + 1)4

)
a2 + 81

(
(s− 3)m

3s
+ as

)
+ s4as + (3 + s)4 =

(67 + s3 + 4s2 + 14s)m + 8q,
(
1 + (s + 2)5

)
a1 +

(
32 + (s + 1)5

)
a2 + 243

(
(s− 3)m

3s
+ as

)
+ s5as + (3 + s)5 =

(246 + s4 + 5s3 + 20s2 + 70s)m + 20(3 + s)q,
(
1 + (s + 2)6

)
a1 +

(
64 + (s + 1)6

)
a2 + 729

(
(s− 3)m

3s
+ as

)
+ s6as + (3 + s)6 =

(895 + s5 + 6s4 + 27s3 + 110s2 + 327s)m + 12(29 + 3s2 + 14s)q + 12h.

Solving this system for the variables a2, as, m and h, we get the equalities
above. ¤

In the following theorems we consider some special cases of Theorem 3.1.
We shall need the following well known result: if λ1 (= r), λ2, . . . , λk are all the
distinct eigenvalues of an arbitrary regular graph G (of vertex–degree r) on n
vertices, then (r − λ2) · · · (r − λk) is an integer divisible by n. (This fact can be
proved by considering so–called Hoffman polynomial – see [7]).

Theorem 3.2. Let G be a connected Q–integral (3, s)–semiregular bipartite graph
(s > 5) avoiding 1 in the Q–spectrum. Then its Q–spectrum has one of the forms
given in Table 1. Each row contains the number of vertices (n), the number of edges
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(m), the multiplicities of the eigenvalues (a2, as), the number of quadrangles (q)
and the number of hexagons (h).

Proof. First, from Lemma 3.2 we have that the multiplicities of the Q–eigenvalues
1 and 2 + s are equal. So, according to notation introduced we can write a1 = 0.
It remains to compute the multiplicities a2 and as.

Considering the system of Diophantine equations from the previous theorem,
we get a1 = (s − 2)as + s − 2q

s
− 1. Thus, 2q ≡s 0 must hold, so we can write

q = ts

2
, where t is a non–negative integer. By putting q = ts

2
into (4) we get

a2 = (t + 3)s− 3s2

4− 2s
. Since a2 is a non–negative number, we get t ≤ 3(s− 1) (recall

that s > 5). Similarly, by putting q = ts

2
into (5) we get as = t− s− 1

s− 2
. Having in

mind that as is also non–negative, we get t ≥ s + 1. By computing, we check that
the other two variables (m and h) are non–negative for q = ts

2
, s+1 ≤ t ≤ 3(s−1).

Moreover, since as is an integer as well, we get exactly three possible values of t.
Namely, t ∈ {s + 1, 2s− 1, 3(s− 1)}.

n m a2 as q h

(s + 1)(s + 3)

3
s(s + 1) s 0

s(s + 1)

2

4(s− 2)s(s + 1)

3
22 48 4 1 68 456

51 126 7 1 203 812

210 576 16 1 1040 36000

s + 3 3s 0 2
3(s− 1)s

2
(s− 2)(s− 1)s

Table 1

By computing the other values for t = s + 1 and t = 3(s− 1), we obtain the
values as in the first and the last row of Table 1, respectively. Note that all the
values of the first row are integral if and only if (s + 2) 6≡ 0(mod 3) holds.

If t = 2s − 1, we get n = (s + 3)(s + 4)

6
, m = s(s + 4)

2
. Since n and m are

integers, we get that

(7) (s− 2)s ≡ 0(mod 6)

must hold. Recall that line graph of a connected (3, s)–semiregular bipartite graph
with m edges is a connected regular graph on m vertices. By using the result
mentioned above this theorem, we find that m divides 6s(s+1)(s+3) (the distinct
Q–eigenvalues are s + 3, s + 1, s, 3, 2 and 0). In other words, 12s(s + 1)(s + 3) ≡
0(mod s(s + 4)) must hold, and consequently we have 12(s + 1) ≡ 0(mod (s + 4)).
Using (7) we get that exactly one of numbers (s − 2) and s is divisible by 6. If
s ≡ 0(mod 6) we get that 12(s + 1) ≡ 0(mod (s + 4)) does not hold for any s > 5.
If (s − 2) ≡ 0(mod 6), s > 5, we get that 12(s + 1) ≡ 0(mod (s + 4)) hold if and
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only if s ∈ {8, 14, 32}, i.e. t ∈ {15, 27, 63}. By computing the other values for every
possible t, we obtain the values as in the remaining rows of Table 1. ¤

Now we consider some of signless Laplacian spectra of Table 1 (theoretically
and by computer search). The results obtained are summarized in the following
theorem.

Theorem 3.3. There are exactly four graphs with data corresponding to the first
row of Table 1 for s = 6 (H1, . . . ,H4); there does not exist a graph with data
corresponding to the second row. Finally, the only graphs with data corresponding
to the last row are the complete bipartite graphs K3,s. In the list below each vertex
of the first colour class is represented by list of its neighbours (the vertices of the
second colour class are labelled by numbers 1, 2, . . . , n2).

Proof. By using the computer search we find the graphs H1, . . . , H4. In the same
way, we consider the second row. Finally, it is easy to prove that a connected
(3, s)–semiregular bipartite graph on s + 3 vertices and 3s edges must be K3,s. In
addition, this graph has the remaining data of the last row. ¤

H1 : 1 2 3 1 3 6 1 4 7 2 3 4 2 5 6 3 4 5 3 6 7
1 2 7 1 4 5 1 5 6 2 4 6 2 5 7 3 5 7 4 6 7

H2 :
1 2 3 1 3 7 1 4 7 2 3 4 2 5 7 3 4 5 3 6 7
1 2 6 1 4 5 1 5 6 2 4 6 2 5 7 3 5 6 4 6 7

H3 : 1 2 3 1 3 5 1 4 7 2 3 4 2 5 7 3 4 5 3 6 7
1 2 6 1 4 7 1 5 6 2 4 6 2 5 7 3 6 7 4 5 6

H4 :
1 2 3 1 4 5 1 6 7 2 4 7 2 5 6 3 4 6 3 5 7
1 2 3 1 4 5 1 6 7 2 4 7 2 5 6 3 4 6 3 5 7

Theorem 3.4. Let G be a connected Q–integral (3, s)–semiregular bipartite graph
(s > 5) with no induced quadrangles nor hexagons. Then it (if exists) has 504
vertices, 1008 edges, and the following Q–spectrum: [9, 863, 790, 614, 3182, 290, 163, 0]
(the exponents stand for the multiplicities of the eigenvalues).

Proof. Substituting q = h = 0 into the system of Diophantine equations given in
the proof of Theorem 3.1, and solving it for the variables a1, a2, as and m, we get

a1 =
9(s + 1)
7− s

as =
(s + 1)(s + 2)
−s2 + 9s− 14

a2 =
3(s− 3)(s− 1)(s + 2)

−s2 + 9s− 14

m =
3s(s + 1)(s + 2)

7− s

Since all these variables are non–negative we get s < 7. By computing the other
values for s = 6, we obtain the required values. ¤

The existence of the graphs from the previous theorem as well as the remain-
ing Q–spectra of Table 1 could be considered in forthcoming research.
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8. S. K. Simić, Z. Stanić: Q–integral graphs with edge–degrees at most five. Discrete
Math., 308 (2008), 4625–4634.
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