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1. Introduction

A signed graph Ġ is defined to be a pair (G, σ), in which G = (V,E) is an unsigned
graph, called the underlying graph, and σ : E −→ {1,−1} is the sign function,
also known as the signature. The order of a signed graph, denoted by n, is the
number of its vertices. The edge set of Ġ consists of the subsets of positive and
negative edges. We interpret an unsigned graph as a signed graph in which all
edges are positive.

The adjacency matrix AĠ of Ġ is the n×n (0, 1,−1)-matrix which is obtained
from the adjacency matrix of its underlying graph by reversing the sign of all 1s
which correspond to negative edges. By the spectrum of Ġ, we mean the spectrum
of AĠ. An eigenvalue of Ġ is called a main eigenvalue if the corresponding
eigenspace is not orthogonal to the all-1 vector. Throughout the paper, by the
statement ‘Ġ has k eigenvalues’ we mean that Ġ has exactly k distinct eigenvalues.

In Section 2 we give some terminology and notation, and prove some auxiliary
results. The problem of classifying graphs with a comparatively small number
of eigenvalues has attracted a great deal of attention in the last 70 years; some
recent results can be found in [4, 5, 7, 16, 17]. In [14] we considered regular
and non-regular signed graphs with at most 3 eigenvalues; here we continue this
research and pay more attention to non-regular signed graphs. In Section 3,
we consider connected signed graphs with 3 eigenvalues at least one of which is
simple. The number of simple eigenvalues governs our investigation in Section 4
of vertex-deleted subgraphs which themselves have 3 eigenvalues. In Section 5
we construct some signed graphs with 2 or 3 eigenvalues using weighing matrices
or symmetric 3-class association schemes, and note the implications for vertex-
deleted subgraphs.

2. Preliminaries

We write I, O, J , 0 and j for an identity matrix, an all-0 matrix, an all-1 ma-
trix, an all-0 vector and an all-1 vector, respectively. Subscripts indicate size as
necessary.

A signed graph Ġ is said to be connected, complete, regular or bipartite if the
same holds for its underlying graph. The degree of a vertex in Ġ is the degree
of the same vertex in G. The net-degree of a vertex i, denoted by d±i , is the
difference between the numbers of positive and negative edges incident with i. A
signed graph in which vertex net-degrees are equal is called net-regular. Similarly,
a net-biregular signed graph is a signed graph which has 2 distinct net-degrees. It
is known that Ġ is net-regular if and only if j is an eigenvector of Ġ, and then j

belongs to the eigenspace of the net-degree [20].
A signed graph is said to be homogeneous if all its edges have the same sign
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(in particular, if its edge set is empty). Otherwise, it is said to be inhomogeneous.
The negation −Ġ is obtained by reversing the sign of every edge of Ġ.

We say that signed graphs Ġ and Ḣ are isomorphic if there is a permutation
matrix P such that AḢ = P−1AĠP . In this case we write Ġ ∼= Ḣ. We say that Ġ

and Ḣ are switching equivalent if there is a vertex subset S ⊆ V (Ġ), such that Ḣ
is obtained by reversing the sign of every edge with one vertex in S and the other
in V (Ġ) \ S.

If the vertex labelling is transferred from the underlying graph common to
Ġ and Ḣ, then Ġ and Ḣ are switching equivalent if and only if there is a di-
agonal matrix D with ±1 on the diagonal such that AḢ = D−1AĠD. Clearly,
isomorphism and switching equivalence preserve the spectrum.

An equitable partition of a signed graph Ġ is a partition of the vertex set
V (Ġ) into non-empty cells C1, C2, . . . , Cs, such that each cell induces a net-regular
signed graph and for 1 ≤ i < j ≤ s the edges between Ci and Cj induce a net-
biregular or net-regular signed graph, in which vertices from each of Ci, Cj are
equal in net-degree.

We say that a signed graph Ġ is strongly regular (for short, Ġ is a SRSG)
with parameters r, a, b, c if the entries of A2

Ġ
satisfy

a
(2)
ij =



















r if i = j,

a if i
+∼ j,

b if i
−∼ j,

c if i 6∼ j and i 6= j.

Note that a
(2)
ij is the difference between the numbers of positive and nega-

tive i-j walks of length 2 in Ġ. Accordingly, this definition generalizes the defi-
nition of strongly regular graphs. We mostly deal with SRSGs in Subsection 5.2.

In the forthcoming sections we frequently use the following result.

Proposition 1 [14]. A connected signed graph Ġ has exactly one positive eigen-

value if and only if Ġ is switching equivalent to a non-trivial complete multipartite

graph. If Ġ has exactly one non-negative eigenvalue, then Ġ is switching equiva-

lent to a complete graph.

We now transfer the following two results from the domain of unsigned
graphs.

Proposition 2. If A is a real symmetric matrix with distinct eigenvalues λ1, λ2,
. . . , λk such that λ1 is a simple eigenvalue, then

k
∏

i=2

(A− λiI) =

(

k
∏

i=2

(λ1 − λi)

)

xx⊺,
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where x is a unit eigenvector associated with λ1. For k = 3, there exists an

eigenvector a for λ1, such that (A− λ2I)(A− λ3I) = paa⊺, where

p =

{

1 if λ1 /∈ (λ2, λ3),
−1 if λ1 ∈ (λ2, λ3).

Proof. Considering the spectral decomposition of A, we see that there exists an
orthogonal matrix X such that

k
∏

i=2

(A− λiI) = X











∏k
i=2(λ1 − λi) 0 · · · 0

0 0 · · · 0
...

... · · · ...
0 0 · · · 0











X⊺ =

(

k
∏

i=2

(λ1 − λi)

)

xx⊺,

where x is a unit eigenvector of
∏k

i=2(A − λiI) afforded by
∏k

i=2(λ1 − λi). The
result follows since Ax = λ1x.

For k = 3, by taking a =
√

p(λ1 − λ2)(λ1 − λ3)x, we arrive at the desired
result.

The previous theorem is a slight extension of the result in which A is the
adjacency matrix of an unsigned graph, k = 3 and λ1 is the largest eigenvalue
[4, 7, 16]. Our formulation is more general in order to embrace signed graphs,
with the possibility that λ1 is not the largest eigenvalue.

Proposition 3. Let Ġ be obtained from a signed graph Ḣ of order n by adding

a new vertex whose neighbourhood in Ḣ is determined by the characteristic (0, 1,
−1)-vector r. The characteristic polynomial of Ġ is given by

(1) PĠ(x) = PḢ(x)

(

x−
m
∑

i=1

||Qir||2
x− µi

)

,

where µ1, µ2, . . . , µm are the distinct eigenvalues of Ḣ and Q1, Q2, . . . , Qm are

the matrices of the orthogonal projections of Rn onto the eigenspaces of Ḣ with

respect to the canonical basis.

Proof. Using the Schur matrix decomposition in conjunction with the known
identity adj(xI−AḢ) = det(xI −AḢ)(xI −AḢ)−1, we obtain

PĠ(x) = det

(

x −r⊺

−r xI −AḢ

)

= xPḢ(x)− r⊺ adj
(

xI −AḢ

)

r

= PḢ(x)
(

x− r⊺(xI −AḢ)−1r
)

.
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Since (xI −AḢ)−1 has spectral decomposition
∑m

i=1
1

x−µi
Qi, we have

PĠ(x) = PḢ(x)

(

x− r⊺

(

m
∑

i=1

1

x− µi
Qi

)

r

)

.

Now (1) follows since r⊺Qir = r⊺QiQir = r⊺Q⊺

iQir = (Qir)
⊺Qir = ||Qir||2.

The ‘unsigned’ version of the previous theorem is well-known, see [6, The-
orem 2.2.8]. The cone over a signed graph Ġ is obtained by adding a vertex v
along with positive edges between v and every vertex of Ġ. We denote this cone
by K1∇Ġ. The following result is a direct consequence of the previous one.

Corollary 4. The cone over Ḣ has the characteristic polynomial

PK1∇Ḣ(x) = PḢ(x)

(

x−
m
∑

i=1

nβ2
i

x− µi

)

,

where µ1, µ2, . . . , µm are distinct eigenvalues of Ḣ and β1, β2, . . . , βm are the cor-

responding main angles defined by βi = ||Qij||/
√
n.

3. Signed Graphs with 3 Eigenvalues, at Least One of which is

Simple

In this section we give some characterizations of signed graphs described in the
section title. We start with the following lemma.

Lemma 5. If Ġ is a connected signed graph with 3 eigenvalues such that at least 2
of them are simple, then Ġ is switching equivalent to a complete bipartite graph.

Proof. If every eigenvalue of Ġ is simple, then Ġ is switching equivalent to (the
complete bipartite graph) K1,2. Now suppose that λ is the unique non-simple
eigenvalue. If λ = 0 then Ġ has exactly one positive eigenvalue, hence is switching
equivalent to a complete multipartite graph by Proposition 2.1. Moreover, since
its spectrum has the form [−ρ, 0n−2, ρ], Ġ is switching equivalent to a complete
bipartite graph [6, p. 47].

If λ 6= 0 then Ġ has a connected subgraph without λ as an eigenvalue,
namely K1. Since the eigenspace of λ has codimension 2, K1 can be extended to
a connected induced subgraph Ḣ of order 2 without λ as an eigenvalue (see [6,
Theorem 5.1.6], which can be extended to the framework of signed graphs with
slight modifications in the proof). Since Ḣ ∼= ±K2 we have λ /∈ {1,−1}. Since
also λ 6= 0, we know from [13, Theorem 3.3] that Ġ has at most 4 vertices, and
this case is resolved by inspection.
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Now we consider signed graphs with 3 eigenvalues, exactly one of which is
simple. Accordingly, we assume that a connected signed graph Ġ has spectrum
[ρ, µm, λl], with m, l ≥ 2 and µ > λ. By Proposition 2, there is a non-zero vector
a = (a1, a2, . . . , an)

⊺ such that Aa = ρa and

(2) (A− µI)(A− λI) = paa⊺,

where A = AĠ, p = −1 if µ > ρ > λ, and p = 1 otherwise. By equating the
diagonal entries of both sides, we get

(3) di = pa2i − µλ,

where di is degree of the vertex i.

Lemma 6. If Ġ is a connected net-regular signed graph with spectrum [ρ, µm, λl],
where ρ is its net-degree, then Ġ is regular.

Proof. Every eigenvector afforded by ρ is constant, which, by (3), means that Ġ
is regular.

We note in passing that, by [8], the signed graph Ġ mentioned in the previous
result is strongly regular. Moreover, we have the following result, which will be
used in our last section.

Lemma 7. A connected inhomogeneous non-complete regular signed graph Ġ is

net-regular with spectrum [ρ, µm, λl] (ρ being the net-degree) if and only if Ġ is

strongly regular and its parameters satisfy a+ b = 2c 6= 0.

Proof. Let Ġ have spectrum as in the statement of the lemma. Since every
eigenvector afforded by ρ is constant, by (2) we have

A2 = (µ+ λ)A− µλI + kJ, for some k 6= 0.

Comparing the entries of the left and the right hand side, we conclude that Ġ is
strongly regular with a + b = 2k and c = k 6= 0. The converse follows directly
from [8, Theorem 4.2].

Next we deal with the case in which an eigenvalue other than ρ is the only
non-main eigenvalue.

Theorem 8. If Ġ is a connected signed graph with spectrum [ρ, µm, λl] (m, l ≥ 2)
such that only λ is non-main, then there is a non-zero constant α such that

(4) di = α
(

d±i − µ
)2 − µλ,

where di and d±i are the degree and the net-degree of the vertex i, respectively.
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In particular, if Ġ is regular then it is net-biregular, the sum of the corre-

sponding net-degrees is 2µ and Ġ is switching equivalent to a net-regular signed

graph. If Ġ is biregular then it is switching equivalent to a net-biregular signed

graph.

Proof. Observe first that Ġ is not net-regular, since it has more than one main
eigenvalue. We retain the notation introduced in Lemma 6. Since ρ and µ are
main, we have

(5) (A− ρI)(A− µI)j = 0,

as proved in [19] on the basis of the result for unsigned graphs which can be
found in [15]. It follows that A2j ∈ span〈d, j〉, where Aj = d = (d±1 , d

±
2 , . . . , d

±
n )

⊺.
Moreover, since a⊺j 6= 0, (2) shows that a ∈ span〈d, j〉. Hence, we may write
a = rd+ sj, where r 6= 0 as Ġ is not net-regular.

By (5), we have A2j = (ρ+ µ)Aj− ρµj, which together with (2), gives

(ρ− λ)d− µ(ρ− λ)j = pa(a⊺j) = p(a⊺j)(rd+ sj).

By equating the coefficients of d and j, we find that s = −µr, and so

(6) a = r(d− µj).

Using (3), we obtain di = pr2
(

d±i − µ
)2 − µλ, and by setting α = pr2, we arrive

at (4).

Now, if Ġ is d-regular, then d = α(d±i −µ)2−µλ for every vertex i. Evidently,
this equation has 2 solutions in d±i and since Ġ is not net-regular, both solutions
appear as net-degrees; hence, Ġ is net-biregular. The sum of the corresponding
net-degrees follows from the previous equation for d. Lastly, from (3) we see that
the coordinates of a are equal in absolute value. If D is the diagonal matrix of
±1s with 1 in the ith position precisely when ai is positive, then D−1AD is the
adjacency matrix of a switching equivalent signed graph, say Ḣ. Moreover, Da is
a constant eigenvector associated with ρ in Ḣ, which means that Ḣ is net-regular.

Finally, suppose that Ġ is biregular with degrees d1 and d2, and assume
that Ġ is not net-biregular. Then, for at least one j (j ∈ {1, 2}), there are vertices
of degree dj which differ in net-degree. By (6), the corresponding coordinates
of a are different, while by (3), they are equal in absolute value. Using D formed
exactly as before, we obtain a signed graph Ḣ for which we have AḢDa = ρDa

where Da has 2 different coordinates. By (6), this means that Ḣ has 2 net-
degrees, and so it is net-biregular.

Of course, there is an analogous statement with µ in the role of the unique
non-main eigenvalue. Here is a closer description of Ġ being net-biregular.
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Corollary 9. If the signed graph Ġ of Theorem 8 is net-biregular, then Ġ is

biregular and its net-degrees determine an equitable vertex bipartition.

Proof. From (4) we see that Ġ must be biregular. In addition, since Ġ is non-
regular, its vertices are equal in degree if and only if they are equal in net-degree.
By (6), the eigenvector a of (2) has 2 different coordinates, say au and aw,
which correspond to different net-degrees and determine the vertex set partition
V = U ∪̇W . It remains to show that this partition is equitable. For v ∈ V , let
d±vu and d±vw denote its net-degree in U and W , respectively. Then we also have
d±v = d±vu + d±vw. If v ∈ U , since a is associated with ρ, we have d±vuau + d±vwaw =
ρau, i.e., d

±
vuau+

(

d±v − d±vu
)

aw = ρau and
(

d±v − d±vw
)

au+ d±vwaw = ρau. The last
two equalities lead to

d±vu =
ρau − d±v aw
au − aw

and d±vw = au
d±v − ρ

au − aw
.

In a very similar way, we obtain

d±vu = aw
d±v − ρ

aw − au
and d±vw =

ρaw − d±v au
aw − au

,

for v ∈ W . In other words, the net-degrees determine an equitable vertex bipar-
tition.

It is not difficult to construct some examples. For instance, by making a
switch with respect to 3 mutually adjacent vertices of the Paley graph with
9 vertices, we obtain a regular and net-biregular signed graph with spectrum
[

4, 14, (−2)4
]

. Also, the cone over the complete bipartite signed graph K̇4,4, in
which negative edges form a perfect matching, is biregular and net-biregular,
while its spectrum is

[

4, 23, (−2)5
]

.

4. Vertex-Deleted Subgraphs with 3 Eigenvalues

In this section we consider the question of whether a vertex-deleted subgraph of
a connected signed graph Ġ with 3 eigenvalues also has 3 eigenvalues. We distin-
guish 3 cases depending on the number of simple eigenvalues of Ġ. First, if all of
them are simple then all vertex-deleted subgraphs have fewer than 3 eigenvalues;
this case is trivial. If Ġ has 2 simple eigenvalues, then Ġ is switching equivalent
to a complete bipartite graph, by Lemma 5. If so, then every vertex-deleted sub-
graph is also switching equivalent to a complete bipartite graph; such a subgraph
has 3 eigenvalues unless Ġ is the star K̇1,n−1 and the degree of the deleted vertex
is n − 1. The remaining case is more complicated and it is considered in the
following two theorems.
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Theorem 10. Let Ġ be a connected signed graph with spectrum
[

ρ, µm, λl
]

, with

m, l ≥ 2 and µ > λ. Let Ḣ = Ġ−v and let r be the characteristic (0, 1,−1)-vector
that determines the neighbourhood of v in Ḣ. If Ḣ has 3 eigenvalues, then r is

an eigenvector associated with an eigenvalue of Ḣ distinct from µ and λ, and:

(i) for ρ > µ, the spectrum of Ḣ is
[

µm, ρ+ λ, λl−1
]

with ||r||2 = −ρλ;

(ii) for ρ < λ, the spectrum of Ḣ is
[

µm−1, ρ+ µ, λl
]

with ||r||2 = −ρµ;

(iii) for ρ ∈ (λ, µ), the spectrum of Ḣ is
[

µm−1, ρ2, λl−1
]

with ρ = µ+λ, ||r||2 =
−µλ or

[

µm, ρ+λ, λl−1
]

with ||r||2 = −ρλ, or
[

µm−1, ρ+µ, λl
]

with ||r||2 =
−ρµ.

Conversely, if r is an eigenvector of Ḣ associated with an eigenvalue dis-

tinct from µ and λ, then Ḣ has 3 eigenvalues when either ρ is an eigenvalue of

multiplicity 2 in Ḣ or Ḣ does not have ρ as an eigenvalue.

Proof. Computing tr(AĠ) and tr(A2
Ġ
), we obtain

ρ+mµ+ lλ = 0,(7)

ρ2 +mµ2 + lλ2 = 2e,(8)

where e denotes the number of edges of Ġ. Let g be the number of edges in Ġ
but not in Ḣ, so that g = ||r||2.

Suppose first that ρ > µ. Observe that λ < 0, since Ġ must have at least
one negative eigenvalue (see Proposition 1), and then we also have µ ≥ 0. By
eigenvalue interlacing, the eigenvalues of Ḣ are ν, µm−1,θ,λl−1, where ρ≥ν≥µ ≥
θ≥λ. Now, since Ḣ has 3 eigenvalues we have one of the following situations:

(a) ν = ρ and θ ∈ {µ, λ},
(b) ν = µ and θ /∈ {µ, λ},
(c) ν /∈ {ρ, µ} and θ = µ,

(d) ν /∈ {ρ, µ} and θ = λ.

For (a), when θ = µ we have ρ+mµ+ (l− 1)λ = 0, which together with (7)
leads to the contradiction λ = 0. When θ = λ in a similar way we get µ = 0, but
then Ḣ and Ġ have the same number of edges (by (8)), a contradiction since Ġ
is connected.

For (b), we use the equalities (7) and (8) along with tr(AḢ) = 0 and tr(A2
Ḣ
) =

2(e−g) to obtain θ = ρ+λ and g = −ρλ. To complete the proof of (i) it remains
to prove that r is an eigenvector of Ḣ associated with ρ+ λ.

Let Qξ denote the matrix of the orthogonal projection of R
n−1 onto the

eigenspace of an eigenvalue ξ of Ḣ. By Proposition 3, we have

PĠ(x) = PḢ(x)

(

x− ||Qµr||2
x− µ

− ||Qθr||2
x− θ

− ||Qλr||2
x− λ

)

.
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Since the multiplicity of µ and λ in Ġ is not less than the multiplicity of the same
eigenvalue in Ḣ, we have Qµr = Qλr = 0, which means that r is orthogonal to
the eigenspaces of µ and λ, equivalently r belongs to the eigenspace of θ = ρ+λ.

For (c), as in the previous case, we obtain ν = ρ + λ and g = −ρλ, along
with the conclusion that r belongs the eigenspace of ν.

For (d), we find that ν = ρ+ µ, which is impossible as µ ≥ 0 and ν 6= ρ.

This completes the proof of (i), while (ii) follows analogously.

Now suppose that ρ ∈ (λ, µ). Here µ > 0, λ < 0 and the possible eigenvalues
of Ḣ are µm−1, ν, θ, λl−1. The cases that arise are considered in the same way as
before, and yield the results summarized in (iii).

Assume now that r belongs to the eigenspace of an eigenvalue of Ḣ distinct
from µ and λ. If ρ is an eigenvalue of Ḣ with multiplicity 2, then (by eigenvalue
interlacing) Ḣ has 3 eigenvalues, and so it remains to consider the case in which ρ
does not belong to the spectrum of Ḣ. In this case Ḣ has at most 4 eigenvalues.
If λ, µ are the only eigenvalues of Ḣ then ρ = 0 and we obtain the contradiction
g = 0. Now suppose that Ḣ has 4 eigenvalues, µ, λ, ν and θ. By Proposition 3,
we have

PĠ(x) = PḢ(x)

(

x− ||Qµr||2
x− µ

− ||Qλr||2
x− λ

− ||Qνr||2
x− ν

− ||Qθr||2
x− θ

)

.

If r belongs to the eigenspace of (say) ν, then we obtain

(9) (x− ν)(x− ρ)(x− µ)m(x− λ)l =
(

x(x− ν)− ||Qνr||2
)

PḢ(x).

Observe that the multiplicities of µ and λ in Ḣ are m− 1 and l− 1, respectively,
which implies (x−µ)(x−λ) =

(

x(x− ν)− ||Qνr||2
)

; but then since (x− ρ) must

appear on the right hand side of (9), we conclude that ρ is an eigenvalue of Ḣ.
This contradiction completes the proof.

We note a consequence of Theorem 10 in the case that Ġ is connected and
switching equivalent to its underlying graph. Then ρ is the largest eigenvalue
of Ġ, and so ρ is not an eigenvalue of Ḣ. Hence, if r is an eigenvector of Ḣ
associated with an eigenvalue other than µ or λ then Ḣ has 3 eigenvalues. Plenty
of examples can be found among unsigned graphs; for instance Ḣ can be the
Petersen graph, with Ġ the cone over Ḣ. We further consider cones by setting
Ġ ∼= K1∇Ḣ in Theorem 10.

Corollary 11. Suppose that K1∇Ḣ has spectrum
[

ρ, µm, λl
]

, where m, l ≥ 2 and

µ > λ. If Ḣ is connected with 3 eigenvalues, then Ḣ is net-regular and either:

(i) Ḣ has spectrum
[

ρ+ λ, µm, λl−1
]

, with ρ > ρ+ λ > µ > λ or

(ii) Ḣ has spectrum
[

µm−1, λl, ρ+ µ
]

, with ρ < ρ+ µ < λ < µ.
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Proof. By setting r = j in Theorem 10 we see that j is an eigenvector of Ḣ,
and so Ḣ is net-regular. Let AḢj = ν j, Ġ ∼= K1∇Ḣ and n = 1 + l +m. From
Theorem 10 we see that ν 6∈ {µ, λ} and there are five possible scenarios:

(a) ρ > µ, ν = ρ+ λ, n−1 = −ρλ and Ḣ has spectrum
[

µm, ρ+ λ, λl−1
]

;

(b) ρ < λ, ν = ρ+ µ, n−1 = −ρµ and Ḣ has spectrum
[

µm−1, ρ+ µ, λl
]

;

(c) λ < ρ < µ, ν = ρ+ λ, n−1 = −ρλ and Ḣ has spectrum
[

µm, ρ+ λ, λl−1
]

;

(d) λ < ρ < µ, ν = ρ+ µ, n−1 = −ρµ and Ḣ has spectrum
[

µm−1, ρ+ µ, λl
]

;

(e) λ < ρ < µ, ν = ρ, n−1 = −λµ, ρ=µ+λ and Ḣ has spectrum
[

µm−1, ρ2, λl−1
]

.

Note first that if λ has multiplicity l − 1 in Ḣ then l > 2, for otherwise Ḣ
has 2 simple eigenvalues and, by Lemma 5, is switching equivalent to a complete
bipartite graph, say Kr,s. Then µ = 0 and {ν, λ} = {−√

rs,
√
rs}. Moreover,

r + s = n − 1 = −ρλ = (λ − ν)λ = 2rs, whence Ḣ ∼= K2, a contradiction.
Similarly, if µ has multiplicity m− 1 in Ḣ, then m > 2. Now we may apply [14,
Theorem 5.5] to Ḣ, because Ḣ is net-regular, ν is a simple eigenvalue of Ḣ and
each of λ, µ has multiplicity ≥ 2 in Ḣ.

For (a), by [14, Theorem 5.5] either µ(µ − ν) = n − 1 and µ > 0 > λ > ν
or λ(λ − ν) = n−1 and ν > µ > 0 > λ. In the former case, we have ν > µ + λ
and so λ < ν −µ < ν, a contradiction. In the latter case, we have part (i) of this
corollary.

For (b), we again get either µ(µ − ν) = n − 1 and µ > 0 > λ > ν or
λ(λ − ν) = n−1 and ν > µ > 0 > λ. In the former case, we have part (ii) of
this corollary. In the latter case, µ is the largest eigenvalue of Ġ because ρ < λ.
Hence ν ≤ µ, a contradiction.

For (c), we have λ < 0 and µ > 0, because λ and µ are respectively the least
and largest eigenvalues of Ġ. By [14, Theorem 5.5], either µ(µ − λ) = n−1 or
λ(λ − µ) = n−1. Since µ > ρ, we have −λµ > −λρ, and so in the former case
µ(µ− λ) < −λµ. Since µ > 0, we have µ− λ < −λ and the contradiction µ < 0.
In the latter case, we have λ(λ − µ) = n−1 = −ρλ, whence ρ = µ − λ > µ, a
contradiction.

For (d), we have λ < 0, µ > 0 and either µ(µ−λ) = n−1 or λ(λ−µ) = n−1. In
the former case, µ(µ−λ) = n− 1 = −ρµ, whence ρ = λ−µ < λ, a contradiction.
In the latter case, ρ > λ and so λ(λ−µ) = −ρµ < −λµ, whence λ−µ > −µ and
the contradiction λ > 0.

For (e), we have ν = λ + µ, and so by [14, Theorem 5.5], Ġ has just 2
eigenvalues, a contradiction.

It remains to consider signed graphs with 3 eigenvalues such that none of
them is simple.
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Theorem 12. Let Ġ be a connected signed graph with spectrum
[

ρr, µm, λl
]

, with

r,m, l ≥ 2. Let Ḣ = Ġ − v and let r denote the characteristic (0, 1,−1)-vector
that determines the neighbourhood of v in Ḣ.

If Ḣ has 3 eigenvalues then, to within a permutation of the eigenvalues, its

spectrum is
[

ρr+1, µm−1, λl−1
]

; moreover, ρ = µ+ λ, ||r||2 = −µλ, and r belongs

to the eigenspace of ρ in Ḣ.

Conversely, if r belongs to the eigenspace of an eigenvalue of Ḣ, then Ḣ has

at most 4 eigenvalues, with 3 eigenvalues precisely when the eigenvalue associated

with r also belongs to the spectrum of Ġ.

Proof. Assume that Ḣ has 3 eigenvalues and suppose first that the multiplicities
of two of them (say µ and λ) are transferred from Ġ. Since tr(AĠ) = tr(AḢ)

we have ρ = 0, and since tr(A2
Ġ
) = tr(A2

Ḣ
) we see that Ġ and Ḣ have the same

number of edges, a contradiction. By eigenvalue interlacing, the remaining case
is the one in which every eigenvalue changes its multiplicity: one increases and
two decrease. If the multiplicity of ρ increases, then as before we have ρ = µ+λ.
Using Proposition 3 and following the proof of Theorem 10, we find that ρ is
afforded by r in Ḣ and that ||r||2 = −µλ.

Conversely, suppose that r belongs to the eigenspace of the eigenvalue ξ of Ḣ.
By Proposition 3, we have

(10) (x− ξ)PĠ(x) = PḢ(x)
(

x(x− ξ)− ||Qξr||2
)

.

If Ḣ has 5 eigenvalues (more than this is impossible), those transferred from Ġ
along with (say) ν and θ, then at least one of the factors (x−ν) and (x−θ) occurs
only on the right hand side of (10), which is impossible. Therefore, the number
of eigenvalues of Ḣ is 3 or 4. If their number is 3, then we see immediately that
ξ is an eigenvalue of Ġ. Conversely, if ξ is an eigenvalue of Ġ, and ν is the fourth
eigenvalue of Ḣ (the one distinct from ρ, µ, λ), then as before (x− ν) occurs only
on the right hand side of (10), which is impossible, and we are done.

Example 13. To obtain an example for Theorem 12 it is convenient to start
from Ḣ as a signed graph with spectrum

[

ρr+1, µm−1, λl−1
]

, and set r = j. In

this case, Ḣ is net-regular, and Ġ is a cone over Ḣ. Moreover, ρ = µ+ λ and Ḣ
has −µλ vertices. By inspecting some known net-regular signed graphs with 3
eigenvalues, we arrive at a signed graph which can be found in [1] and satisfies all
the numerical constraints. This is the signed graph obtained by reversing the sign
of every edge belonging to a fixed Hamiltonian cycle of the Paley graph with 9
vertices. Its spectrum is

[

32, 05, (−3)2
]

(with ρ = 0). The corresponding cone
has the spectrum

[

33, 04, (−3)3
]

.

Motivated by the previous example, in which Ġ is a cone over Ḣ, we give a
closer description of both signed graphs in this particular case. The first state-
ment of the next theorem is a general one.
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Theorem 14. The following statements hold.

(i) Let Ġ be a signed graph with ρ as an eigenvalue of multiplicity r ≥ 2,
let Ḣ = G − v and let r be the characteristic vector that determines the

neighbourhood of v in Ḣ. If the eigenspace of ρ in Ḣ has orthogonal basis

r,x1,x2, . . . ,xk and v is vertex 1 in Ġ, then
(

0,x⊺

1

)

⊺
,
(

0,x⊺

2

)

⊺
, . . . ,

(

0,x⊺

k

)

⊺

are linearly independent eigenvectors associated with ρ in Ġ.

(ii) In particular, if Ġ ∼= K1∇Ḣ with spectrum
[

ρr, µm, λl
]

(r,m, l ≥ 2), if j be-

longs to the eigenspace of ρ in Ḣ and if Ḣ has spectrum
[

ρr+1, µm−1, λl−1
]

,

then ρ is the unique main eigenvalue of Ḣ and the unique non-main eigen-

value of Ġ.

Proof. We have

AĠ

(

0
xi

)

=

(

r⊺xi

ρxi

)

= ρ

(

0
xi

)

,

for 1 ≤ i ≤ k. Linear independence follows directly, and we have (i).

For (ii), first note that ρ is the unique main eigenvalue of Ḣ because j is an
eigenvector of ρ in Ḣ. Taking k = r in (i) we obtain a basis for the eigenspace
of ρ in Ġ consisting of vectors orthogonal to j. Thus ρ is non-main in Ġ. If
Ġ has another non-main eigenvalue, then the remaining one is main, but this
means that the cone Ġ is net-regular and hence the complete graph with just 2
eigenvalues, a contradiction.

5. Constructions of Signed Graphs with at Most 3 Eigenvalues

Here we give some examples of signed graphs with 3 eigenvalues, along with
applications of some results from Section 3. The first construction is based on
weighing matrices, while the second one is based on symmetric 3-class association
schemes.

5.1. Weighing matrices

Let W = W (n, α) be a weighing matrix of order n with weight α, i.e., an n × n
(0, 1,−1)-matrix such that W⊤W = αI. For 1 ≤ m ≤ n, we call the submatrix
ofW indexed by rows 1, 2, . . . ,m and columns 1, 2, . . . , n a partial weighing matrix

with weighing extension W .

Theorem 15. Let W ′
1 and W ′

2 be two partial weighing matrices of size m × n
with weighing extensions W1, W2 of weight α. The following block matrix has

spectrum
[

−√
α
n+m

,
√
α
n−m

, 2
√
α
m]

:



1326 F. Ramezani, P. Rowlinson and Z. Stanić

(11) Am(W1,W2) =







Om W1
′ W2

′

W1
′⊺ On

1√
α
W ⊺

1W2

W2
′⊺ 1√

α
W ⊺

2W1 On






.

Proof. Let B be the matrix (W1
′ |W2

′), and let

C=

(

On
1√
α
W ⊺

1W2
1√
α
W ⊺

2W1 On

)

.

By a straightforward computation we arrive at the following equality (see, for
example, [10]):

(2
√
αI2n − C)−1 =

(

2
3
√
α
In

1
3α

√
α
W ⊺

1W2
1

3α
√
α
W ⊺

2W1
2

3
√
α
In

)

.

Therefore B(2
√
αI2n − C)−1B⊺ = 2

√
αIm, and it follows that the vectors

(

x

(µI − C)−1B⊺x

)

,

for x ∈ IRm, lie in the eigenspace for the eigenvalue 2
√
α of Am(W1,W2).

Thus 2
√
α is an eigenvalue of Am(W1,W2) with multiplicity at least m. A similar

argument applied for C = On shows that −√
α is an eigenvalue with multiplicity

at least n + m. In addition, by eigenvalue interlacing,
√
α is an eigenvalue of

Am(W1,W2) with multiplicity at least n−m since the submatrix

(

On
1√
α
W ⊺

1W2
1√
α
W ⊺

2W1 On

)

has the spectrum [−√
α
n
,
√
α
n
].

This theorem enables us to construct an infinite family of signed graphs with
spectrum

[

− √
α
n+m

,
√
α
n−m

, 2
√
α
m]

for some appropriate α. We remark that
the matrix (11) does not always correspond to a signed graph. For a signed graph,
the inner product of any row of W1 and any row of W2 has to be 0 or ±√

α, and
in [11] one can find a method for constructing a family of weighing matrices of
weight 4 with this property. The method can be used to construct signed graphs
with spectrum [−2n+m, 2n−m, 4m], as in the following example.

Example 16. Let W1 and W2 be as follows:
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W1 =

















0 0 1 1 1 1
1 1 0 0 1 −1
1 −1 1 −1 0 0
0 0 1 1 −1 −1
1 1 0 0 −1 1
1 −1 −1 1 0 0

















, W2 =

















1 1 0 0 1 1
1 −1 1 1 0 0
0 0 1 −1 1 −1
1 1 0 0 −1 −1
1 −1 −1 −1 0 0
0 0 1 −1 −1 1

















.

Considering the first two rows of W1 and W2 as the matrices W ′
1 and W ′

2, we see
from Theorem 15 that the signed graph Ġ with adjacency matrix A2(W1,W2) has
spectrum [−28, 24, 42]. Since Ġ has no vertices of degree 4, Theorem 4.3 shows
that if a vertex-deleted subgraph of Ġ has 3 eigenvalues, then it is obtained by
deleting a vertex of degree 8. There are exactly two such vertices, labelled by 1
and 2 in (11), and the deletion of either leads to a subgraph with spectrum
[

− 27, 25, 4
]

. This is because, in the notation of Theorem 4.3, r is an eigenvector
of the vertex-deleted subgraph corresponding to the eigenvalue 2.

5.2. Symmetric 3-class association schemes

A symmetric 3-class association scheme R consists of a set X and a partition of
X ×X into 4 non-empty binary relations R0, R1, R2, R3 satisfying the following
constraints:

• R0 = {(x, x) | x ∈ X};
• If (x, y) ∈ Ri, then (y, x) ∈ Ri and if (x, y) ∈ Rk, then the number of z ∈ X

such that (x, z) ∈ Ri and (z, y) ∈ Rj is a constant pkij depending on i, j, k,
but not on a particular choice of x, y.

For 0 ≤ i ≤ 3, we define the (0, 1)-matrix Ai with rows and columns indexed
by the elements of X, and (x, y)-entry 1 if and only if (x, y) ∈ Ri. It follows
that A0 = I and AiAj = Σ3

k=0p
k
ijAk. For i ∈ {1, 2, 3} let Gi be the graph

with adjacency matrix Ai, and for distinct i, j ∈ {1, 2, 3} let Ġi,j be the signed
graph with adjacency matrix Ai − Aj . The matrices Ai span a 4-dimensional
commutative R-algebra (called the Bose-Mesner algebra, cf. [3, Chapter 17]). It
follows that the signed graphs Ġi,j have at most 4 eigenvalues.

Theorem 17. Let Ġi,j be a signed graph arising from a 3-class association

scheme. Then Ġi,j is strongly regular with parameters

r = p0ii + p0jj , a = piii + pijj − 2piij , b = −2pjij + pjii + pjjj , c = pkii + pkjj − 2pkij

where {i, j, k} = {1, 2, 3}. Moreover, Ġi,j has 3 eigenvalues if and only if a+ b =
2c 6= 0, and 2 eigenvalues if and only if a+ b = 2c = 0.
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Proof. The first assertion follows from [12, Theorem 2.2], and the second from
Lemma 7. Lastly, Ġij is not a complete graph since Ak 6= 0, and so the third
assertion follows from [18, Theorem 4.2].

We note that b is replaced by −b in [12, Definition 1.4]. Now we are ready
to provide some examples of signed graphs with at most 3 distinct eigenvalues.

Example 18. The 3-class Johnson scheme J(n, 3) (n ≥ 6), also known as the
tetrahedral scheme, is defined on the 3-subsets of an n-set, with two subsets in
the relation Ri if they intersect in 3− i elements. The following scheme provides
the numbers pkij relevant to Ġ1,3; they are obtained by a simple computation.

p111 p133 p113 p311 p313 p333 p211 p233 p213

n− 2
(

n−4
3

)

0 0 3(n− 6)
(

n−6
3

)

4
(

n−5
3

)

n− 5

Therefore,

p111 + p133 − 2p113 − 2p313 + p311 + p333 = n− 2 +
(

n−4
3

)

− 6(n− 6) +
(

n−6
3

)

,

2(p211 + p233 − 2p213) = 8 + 2
(

n−5
3

)

− 4n+ 20.

Both of the above expressions are equal to 1
3(n−2)(n−7)(n−9). By Theorem 17,

Ġ1,3 has 2 eigenvalues when n = 7 or n = 9, and 3 eigenvalues otherwise.
Alternatively we can find the spectrum of Ġi,j by using the following infor-

mation from [2, 9]:

Spec(A1) =
[

3(n− 3), (2n− 9)n−1, (n− 7)(
n

2
)−n,−3(

n

3
)−(n

2
)
]

,

Spec(A3) =
[

(

n−3
3

)

, (−n2 + 9n)/2− 10
n−1

, (n− 5)(
n

2
)−n,−1(

n

3
)−(n

2
)
]

.

Here the eigenvalues are ordered by common eigenvectors and so the eigenvalues

of A1−A3 are ρ, µn−1 and λ(
n

3
)−n, where ρ, µ, λ are not necessarily distinct, and

ρ = 3(n− 3)−
(

n−3
3

)

, µ = 1
2(n

2 − 5n+ 2), λ = −2.

Note that G1 is regular of degree r1 = 3(n−3), G3 is regular of degree r2 =
(

n−3
3

)

and the graph underlying Ġ1,3 is regular of degree r1 + r2.
We find that ρ ≥ µ if and only if n(n − 2)(n − 7) ≤ 0. When n = 7, Ġ1,3

has spectrum [87,−228] and by [14, Corollary 4.4] each vertex-deleted subgraph
of Ġ1,3 has 3 eigenvalues. Such a subgraph necessarily has spectrum [6, 86,−2−27].
When n = 6 the spectrum of Ġ1,3 is [8, 45,−214] and each vertex of Ġ1,3 has
degree 10. Since −ρλ 6= 10, Theorem 10(i) shows that no vertex-deleted subgraph
of Ġ1,3 has 3 eigenvalues.
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Secondly, we find that ρ ≤ λ if and only if (n− 1)(n− 2)(n− 9) ≥ 0. When
n = 9, the spectrum of Ġ1,3 is

[

198,−276
]

and by [14, Corollary 4.4] each vertex-
deleted subgraph has spectrum

[

17, 197,−275
]

. When n > 9, no vertex-deleted

subgraph of Ġ1,3 has 3 eigenvalues for otherwise, in the notation of Theorem
10(ii), we have ‖r‖2 = −ρµ; but r1+r2 = −ρµ if and only if (n−1)(n−2)(n−9) =
0, equivalently n = 9.

The remaining case is n = 8, when Theorem 10(iii) shows in similar fashion
that a vertex-deleted subgraph of Ġ1,3 does not have 3 distinct eigenvalues. In
summary, a vertex-deleted subgraph of the signed graph Ġ1,3 derived from J(n, 3)
has 3 eigenvalues if and only if n is 7 or 9.

The definition of J(n, 3) may be extended to J(5, 3), but this scheme is de-
generate in our context because then A3 = 0. In fact, J(5, 3) is a 2-class associa-
tion scheme, with G1

∼= L(K5) and G2
∼= G1 (the Petersen graph). Here Ġ1,2 has

spectrum
[

−35, 35
]

, while any vertex-deleted subgraph has spectrum
[

−34, 0, 34
]

.

Example 19. The 3-class Hamming scheme H(3, q) is defined on the triples of q
symbols (words of length 3 over an alphabet with q letters), where two triples
are in the relation Ri if they differ in i coordinates (i = 0, 1, 2, 3). In this case we
have the following.

p1
11

p1
33

p1
13

p3
11

p3
13

p3
33

p2
11

p2
33

p2
13

q − 2 (q − 2)(q − 1)2 0 0 3(q − 2) (q − 2)3 2 (q − 2)2(q − 1) q − 1

Therefore,

p111 + p133 − 2p113 − 2p313 + p311 + p333 = q− 2 + (q− 2)(q− 1)2 − 6(q− 2) + (q− 2)3,

2
(

p211 + p233 − 2p213
)

= 4 + 2(q − 2)2(q − 1)− 4q + 4.

Note that both of the above expressions are equal to 2q(q − 2)(q − 3). By The-
orem 17, the signed graph Ġ1,3 has at most 3 distinct eigenvalues. Moreover,
c = 0 if and only if q is 2 or 3, and these are the cases in which Ġ1,3 has only 2
distinct eigenvalues. Thus, by [14, Corollary 4.4] any vertex deleted subgraph
of Ġ1,3 has 3 distinct eigenvalues when q ∈ {2, 3}. On the other hand, by the
proof of [8, Theorem 4.2] the eigenvalues of Ġ1,3 other than its net-degree are the
roots of the quadratic

x2 +
b− a

2
x+

a+ b

2
− r.

Now, by Theorem 17, we conclude that the eigenvalues of Ġ1,3 are

ρ = 3(q − 1)− (q − 1)3, µ = q2 − 2, λ = −2.

For q > 3, we find ρ < λ, and so by Theorem 10(ii), if a vertex-deleted subgraph
of Ġ1,3 has only 3 distinct eigenvalues then ‖r‖2 = −ρµ. This equality holds if
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and only if
q(q − 1)2(q + 2)(q − 3) = 0.

Accordingly, no vertex-deleted subgraph of Ġ1,3 has 3 eigenvalues when q > 3.
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