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A B S T R A C T

A signed graph 𝐺̇ is called sign-symmetric if it is switching isomorphic to its negation −𝐺̇, where −𝐺̇ is obtained
by reversing the sign of every edge of 𝐺̇. The authors of Belardo et al. (2018) constructed a complete signed
graph that is not sign-symmetric, but has a symmetric spectrum and posted the following problem: Are there
connected non-complete signed graphs whose spectrum is symmetric but they are not sign-symmetric? In this
paper we positively address this problem. Our examples include infinite families constructed on the basis of the
Cartesian product and the corona product of signed graphs. We note that the same problem was first resolved
in Ghorbani et al. (2020) by means of different constructions.
1. Introduction

A signed graph 𝐺̇ is a pair (𝐺, 𝜎), where 𝐺 = (𝑉 ,𝐸) is a simple
unsigned graph, called the underlying graph, and 𝜎 ∶ 𝐸 ⟶ {1,−1} is
the sign function or the signature. The number of vertices of 𝐺̇ is called
the order and denoted by 𝑛. The edge set of 𝐺̇ is composed of subsets of
positive and negative edges. The adjacency matrix 𝐴𝐺̇ of 𝐺̇ is obtained
from the adjacency matrix of its underlying graph by reversing the sign
of all 1s which correspond to negative edges. The eigenvalues of 𝐺̇ are
identified as the eigenvalues of 𝐴𝐺̇, and they form the spectrum of 𝐴𝐺̇.

A detailed introduction to the theory of spectra of signed graphs
can be found in Zaslavsky’s [1]. Accordingly, many concepts in the
framework of signed graphs are transferred from the domain of un-
signed ones. For example, we say that a signed graph is connected,
complete, bipartite or regular if the same holds for its underlying graph.
The degree of a vertex is equal to its degree in the underlying graph.
We say that a cycle in a signed graph is positive if it contains an even
number of negative edges. Otherwise, it is said to be negative. We say
that signed graphs 𝐺̇1 and 𝐺̇2 are switching isomorphic if there is a
monomial (0, 1,−1)-matrix 𝑃 such that 𝐴𝐺̇2

= 𝑃−1𝐴𝐺̇1
𝑃 . Evidently,

if signed graphs are switching isomorphic, then there is a bijection
(also known as a switching isomorphism) between their sets of vertices
which preserves vertex degrees and adjacencies between the vertices.
Switching isomorphic signed graphs share the same spectrum. The
negation of 𝐺̇, denoted by −𝐺̇, is obtained by reversing the sign of every
edge of 𝐺̇. In particular, a signed graph 𝐺̇ is said to be sign-symmetric
if it is switching isomorphic to its negation.

We know from [2] that the spectrum of a sign-symmetric signed
graph is symmetric (with respect to the origin). Considering the
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question of existence of signed graphs whose spectrum is symmetric
but they are not sign-symmetric, the authors of the same reference have
noticed that such signed graphs are necessarily non-bipartite, and then
proved that there are complete signed graphs that positively address
this question. An example is illustrated in Fig. 1.

We briefly say that a signed graph which has a symmetric spectrum
but is not sign-symmetric is an SSNSS signed graph. Throughout the
paper we exclusively reserve the symbol 𝑆̇ to correspond to the signed
graph of the mentioned figure. We remark that complete SSNSS signed
graphs are not easily constructed. For example, 𝑆̇ is constructed on
the basis of a known example of an unsigned graph of order 8 which
shares the same Seidel spectrum with its complement, but is not (Seidel-
)switching isomorphic to it [3]. We believe that the reader is familiar
with the Seidel matrix of a graph and the concept of Seidel switching;
in fact, the adjacency matrix of a complete signed graph 𝐺̇ coincides
with the Seidel matrix of a graph induced by negative edges of 𝐺̇.

The authors of [2] formulated the following problem.

Problem 1.1. Are there connected non-complete SSNSS signed
graphs?

In [4], Ghorbani et al. constructed some infinite families of con-
nected non-complete SSNSS signed graphs. Moreover, they proved the
existence of such signed graphs for every order ≥ 6. In this paper
we construct a sequence of examples that positively address the same
problem. Our examples differ from those of [4] and include infinite
families of SSNSS signed graphs.
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Fig. 1. The connected complete SSNSS signed graph 𝑆̇. In this and forthcoming figures,
negative edges are dashed.

2. Connected non-complete SSNSS signed graphs

Our notation is standard. For example, we use 𝐾𝑛 and 𝑃𝑛 to denote
he unsigned complete graph and the unsigned path with 𝑛 vertices,
espectively. If the signed graphs 𝐺̇1, 𝐺̇2 are switching isomorphic, then

we write 𝐺̇1 ≅ 𝐺̇2.
Let 𝐺̇1 and 𝐺̇2 be signed graphs with vertex sets {𝑢1, 𝑢2,… , 𝑢𝑛1} and

{𝑣1, 𝑣2,… , 𝑣𝑛2}, respectively. The set of vertices of the Cartesian product
𝐺̇1□𝐺̇2 is the Cartesian product of the sets of vertices of 𝐺̇1 and 𝐺̇2, and
the vertices (𝑢𝑖, 𝑣𝑗 ) and (𝑢𝑘, 𝑣𝑙) are joined by a positive (resp. negative)
edge if and only if 𝑢𝑖 = 𝑢𝑘 and 𝑣𝑗 , 𝑣𝑙 are joined by a positive (negative)
edge or 𝑢𝑖, 𝑢𝑘 are joined by a positive (negative) edge and 𝑣𝑗 = 𝑣𝑙.
Observe that 𝐺̇1□𝐺̇2 consists of 𝑛2 copies of 𝐺̇1 and additional edges
which occur between a vertex in the 𝑗th copy and the same vertex in
the 𝑙th copy precisely if 𝑣𝑗 and 𝑣𝑙 are adjacent in 𝐺̇2; the sign of such an
edge is transferred from 𝐺̇2. Clearly, 𝐺̇1□𝐺̇2 is connected if and only if
𝐺̇1 and 𝐺̇2 are connected.

If the eigenvalues of 𝐺̇1 are 𝜆1, 𝜆2,… , 𝜆𝑛1 and the eigenvalues of
𝐺̇2 are 𝜇1, 𝜇2,… , 𝜇𝑛2 , then the eigenvalues of 𝐺̇1□𝐺̇2 are 𝜆𝑖 + 𝜇𝑗 , for
1 ≤ 𝑖 ≤ 𝑛1, 1 ≤ 𝑗 ≤ 𝑛2, see [5].

We start with the following lemma.

Lemma 2.1. If spectra of signed graphs 𝐺̇1 and 𝐺̇2 are symmetric, then
the spectrum of 𝐺̇1□𝐺̇2 is also symmetric.

Proof. Assume that the spectrum of 𝐺̇1□𝐺̇2 is not symmetric. Then
there is a non-zero eigenvalue of the form 𝜆𝑖+𝜇𝑗 (for fixed eigenvalues
𝜆𝑖 of 𝐺̇1 and 𝜇𝑗 of 𝐺̇2), such that its negation −𝜆𝑖 − 𝜇𝑗 is not an
eigenvalues of the Cartesian product. But since spectra of 𝐺̇1 and 𝐺̇2
are symmetric, −𝜆𝑖 is an eigenvalue of 𝐺̇1 and −𝜇𝑗 is an eigenvalue of
𝐺̇2, which means that their sum belongs to the spectrum of 𝐺̇1□𝐺̇2 and
contradicts the assumption. □

Here is our first construction of SSNSS signed graphs.

Theorem 2.2. Let 𝐺̇1 be a complete SSNSS signed graph and 𝐺̇2 be a
connected signed graph with a symmetric spectrum, such that the underlying
graph 𝐺1 is not an induced subgraph of the underlying graph 𝐺2. Then
𝐺̇1□𝐺̇2 is a connected SSNSS signed graph.

Proof. First, 𝐺̇1□𝐺̇2 is connected (since 𝐺̇1 and 𝐺̇2 are connected).
Next, from Lemma 2.1, we immediately get that the spectrum of 𝐺̇1□𝐺̇2
is symmetric, and so it remains to show that 𝐺̇1□𝐺̇2 is not switching
isomorphic to its negation.

In an intermediate step we prove that if 𝑛1, 𝑛2 are the orders of
𝐺1, 𝐺2 then a maximal clique (i.e., maximal complete induced sub-
graph) of the underlying graph 𝐺1□𝐺2 has 𝑛1 vertices and there are

exactly 𝑛2 such cliques isomorphic to the 𝑛2 disjoint copies of 𝐺1. First,
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by definition of the Cartesian product, 𝐺1□𝐺2 contains the 𝑛2 disjoint
copies of 𝐺1. Assume that 𝐾 is either a larger clique or a clique with 𝑛1
vertices but distinct from the previous ones. In both cases it contains a
pair of vertices (𝑢𝑖, 𝑣𝑗 ), (𝑢𝑘, 𝑣𝑙) where 𝑖, 𝑘 are fixed distinct integers from
1 to 𝑛1; for otherwise, 𝐾 would be one of the 𝑛2 existing cliques. If so,
then there must be 𝑗 = 𝑙; for otherwise, the mentioned vertices would
not be adjacent. Moreover, 𝐾 cannot contain a vertex whose second
coordinate differs from 𝑣𝑗 , since such a vertex is not adjacent to both
(𝑢𝑖, 𝑣𝑗 ), (𝑢𝑘, 𝑣𝑗 ). In other words, 𝐾 is an induced subgraph of 𝐺2. Since
𝐺2 does not contain 𝐺1, we conclude that 𝐾 has less than 𝑛1 vertices,
which contradicts the initial assumption.

Assume now by way of contradiction that 𝐺̇1□𝐺̇2 is switching
isomorphic to its negation. By the previous part of the proof, a cor-
responding switching isomorphism must map 𝐺̇1 onto a copy of −𝐺̇1 in
−𝐺̇1□𝐺̇2, but this is impossible since 𝐺̇1 is not switching isomorphic to
its negation, a contradiction. □

It follows by definition that the Cartesian product is complete if
and only if one of 𝐺̇1, 𝐺̇2 consists of a single vertex, while the other
is complete. Therefore, apart from this simple situation, the previous
theorem necessarily produces non-complete SSNSS signed graphs. We
proceed with an example.

Example 2.3. The signed graph 𝑆̇□𝑃3 is illustrated in Fig. 2. It is a
connected non-complete SSNSS signed graph, by Theorem 2.2. In this
example, the second signed graph of the product (so, 𝑃3) is bipartite,
but non-bipartite ones with symmetric spectrum can also be taken
into account. Say, such a signed graph can be obtained by taking two
triangles, one positive the other negative, and inserting a path between
a pair of their vertices.

We now give an infinite family of connected non-complete SSNSS
signed graphs.

Theorem 2.4. For 𝑖 ≥ 0, the signed graph 𝐺̇𝑖 obtained by the following
iterative procedure
{

𝐺̇0 ≅ 𝑆̇,
𝐺̇𝑖+1 ≅ 𝐺̇𝑖□𝐾2,

is a connected SSNSS signed graph. It is non-complete for 𝑖 ≥ 1.

Proof. 𝐺̇𝑖 is connected since it is the Cartesian product of connected
signed graphs.

We prove that 𝐺̇𝑖 is an SSNSS signed graph by induction whose basis
is easily formed by taking into account that 𝑆̇ is an SSNSS signed graph.
Assume that the claim holds for 𝐺̇𝑖 and consider 𝐺̇𝑖+1 ≅ 𝐺̇𝑖□𝐾2. By
definition of the Cartesian product, every complete induced subgraph
of 𝐺̇𝑖+1 with 8 vertices is isomorphic to 𝑆̇ and every complete induced
subgraph of −𝐺̇𝑖+1 with 8 vertices is isomorphic to −𝑆̇. Therefore, a
switching isomorphism between 𝐺̇𝑖+1 and −𝐺̇𝑖+1 necessarily maps 𝑆̇
onto −𝑆̇, which is impossible as they are not switching isomorphic.

Evidently, for 𝑖 ≥ 1, 𝐺̇𝑖 is non-complete by the argument mentioned
below Theorem 2.2. □

The signed graph 𝐺̇1 of the previous theorem is obtained by deleting
the third copy of 𝑆̇ from Fig. 2.

We proceed now with a construction on the basis of another prod-
uct. The corona product (briefly, corona) 𝐺̇1◦𝐺̇2 of signed graphs 𝐺̇1 and
𝐺̇2 is obtained by taking 𝐺̇1 (which has 𝑛1 vertices) and 𝑛1𝐺̇2 (𝑛1 copies
of 𝐺̇2), and then inserting a positive edge between the 𝑖th vertex of 𝐺̇1
and every vertex in the 𝑖th copy of 𝐺̇2, for 1 ≤ 𝑖 ≤ 𝑛1. In what follows
we consider the particular case in which 𝐺̇2 ≅ 𝐾1. We first compute the
spectrum of such a corona.

Lemma 2.5. If 𝜆1, 𝜆2,… , 𝜆𝑛 are the eigenvalues of 𝐺̇, then all the
eigenvalues of 𝐺̇◦𝐾1 are determined by the equations 𝑥2 − 𝜆𝑖𝑥 − 1 = 0,
for 1 ≤ 𝑖 ≤ 𝑛.
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Fig. 2. The connected non-complete SSNSS signed graph 𝑆̇□𝑃3.
Proof. The adjacency matrix of 𝐺̇◦𝐾1 is given by

𝐺̇◦𝐾1
=
(

𝐴𝐺̇ 𝐼𝑛
𝐼𝑛 𝑂𝑛

)

,

here 𝐼𝑛 and 𝑂𝑛 are the 𝑛 × 𝑛 identity and all-0 matrix, respectively.
ince the blocks of 𝑥𝐼2𝑛 − 𝐴𝐺̇◦𝐾1

all commute with each other, its
eterminant is computed as the 2 × 2 determinant, which leads to

et
(

𝑥𝐼2𝑛 − 𝐴𝐺̇◦𝐾1

)

=det
(

(𝑥𝐼𝑛 − 𝐴𝐺̇) ⋅ 𝑥𝐼𝑛 − 𝐼2𝑛
)

=

{

𝑥𝑛 det
(

𝑥2−1
𝑥 𝐼𝑛 − 𝐴𝐺̇

)

, 𝑥 ≠ 0,
−det(𝐼𝑛), 𝑥 = 0.

Therefore 𝑥 is an eigenvalue of 𝐴𝐺̇◦𝐾1
if and only if 𝑥2−1

𝑥 = 𝜆𝑖, for
1 ≤ 𝑖 ≤ 𝑛, and we are done. □

We now determine whether the spectrum of 𝐺̇◦𝐾1 is symmetric.

Lemma 2.6. If the spectrum of 𝐺̇ is symmetric, then the spectrum of 𝐺̇◦𝐾1
is also symmetric.

Proof. By Lemma 2.5, if 𝜆 is an eigenvalue of 𝐺̇, then 1
2 (𝜆 ±

√

4 + 𝜆2)
are the eigenvalues of 𝐺̇◦𝐾1. They are symmetric to the eigenvalues
1
2 (−𝜆 ∓

√

4 + 𝜆2) that arise from the eigenvalue −𝜆 of 𝐺̇, and we are
done. □

We are ready to present another iterative construction.

Theorem 2.7. For 𝑖 ≥ 0, the signed graph 𝐺̇𝑖 obtained by the following
iterative procedure
{

𝐺̇0 ≅ 𝑆̇,
𝐺̇𝑖+1 ≅ 𝐺̇𝑖◦𝐾1,

is a connected SSNSS signed graph. It is non-complete for 𝑖 ≥ 1.

Proof. 𝐺𝑖 is connected and non-complete for 𝑖 ≥ 1 by definition
of corona, while its spectrum is symmetric by Lemma 2.6. Observe
that, for every 𝑖, 𝐺𝑖 contains exactly one complete subgraph with 8
vertices, i.e., 𝑆̇, and therefore it is not isomorphic to its negation by
the argument exploited in the proof of Theorem 2.4. □

The signed graph 𝐺̇1 of the previous theorem is illustrated in Fig. 3.

Remark 2.8. Our motivation was to obtain some examples which
address Problem 1.1, but not to give a large number of complicated
constructions of SSNSS signed graphs. In relation to this, an observant
reader will notice that the constructions of Theorems 2.4 and 2.7 can be
generalized, say by considering an arbitrary SSNSS signed graph instead
of 𝑆̇.
3

Fig. 3. The connected non-complete SSNSS signed graph 𝑆̇◦𝐾1.
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