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Abstract. The investigation of the spectral distances of graphs that started in [3] (I. Jovanović, Z.
Stanić, Spectral distances of graphs, Linear Algebra Appl., 436 (2012) 1425–1435.) is continued by
defining Laplacian and signless Laplacian spectral distances and considering their relations to the spectral
distances based on the adjacency matrix of graph. Some separate results concerning the defined distances
are given, and the initial spectral distances in certain sets of graphs are investigated. Computational data
on Laplacian and signless Laplacian spectral distances are provided.

1. Introduction

Given a graph G on n vertices with the adjacency matrix A and the diagonal matrix of its vertex degrees
D, then the Laplacian matrix of G is L = D − A, and the signless Laplacian matrix of G is Q = D + A.
The M -spectrum of G is just the spectrum of the corresponding matrix M , where M is one of the matrices
A, L, or Q (in the case of A-spectrum the matrix name will be usually suppressed). For i = 1, . . . , n, the
eigenvalues of A, L, and Q in non-increasing order will be denoted by λi(G), µi(G), and κi(G), respectively.
In [3] we defined the A-spectral distance (where it is simply named spectral distance) of n-vertex graphs G1

and G2 as

σA(G1, G2) =

n∑
i=1

|λi(G1)− λi(G2)|.

This definition was earlier suggested by R.A. Brualdi (see [4]). If X is an arbitrary set of graphs on n
vertices, then the cospectrality of G ∈ X is defined as

csAX(G) = min{σA(G,H) : H ∈ X, H 6= G}, (1)

which is completed by the cospectrality measure
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csA(X) = max{csAX(G) : G ∈ X}.
We also introduced the spectral eccentricity of G and the spectral diameter of X by

seccAX(G) = max{σA(G,H) : H ∈ X}, and sdiamA(X) = max{seccAX(G) : G ∈ X},
respectively. All these quantities are closely related to the spectral distances and can be used for measuring
how far apart the spectrum of a graph in X can be from the spectrum of any other graph belonging to the
same set. Moreover, the L- and Q-spectral distances (between n-vertex graphs G1 and G2) are defined as

σL(G1, G2) =

n∑
i=1

|µi(G1)− µi(G2)|, and σQ(G1, G2) =

n∑
i=1

|κi(G1)− κi(G2)|,

respectively. The quantities that are related to the A-spectral distances can be defined for the L- or Q-
spectral distances in the same way. We just change the matrix name in the corresponding notation to
indicate which spectrum we are dealing with (for example, we write csLX to indicate that we use σL instead
of σA in (1)). To avoid possible confusion we keep the matrix name in the A-spectral distances, while the
term ”spectral distance” will be used as a common name for all three kinds of spectral distances.

An n-vertex cycle is denoted by Cn, while the complete multipartite graph with k parts and ni (1 ≤ i ≤ k)
vertices in each is denoted by Kn1,n2,...,nk

; if n1 = n2 = · · · = nk = m, we use the short expression Kk×m.
The disjoint union of two graphs G1 and G2 is denoted by G1 uG2, while the complement of G is denoted
by G. The complete product G1∇G2 is obtained by joining every vertex of G1 with every vertex of G2. For
the remaining notation and terminology we refer the reader to [2].

The paper is organized as follows. In Section 2 we consider the relations between different spectral
distances and give some particular results regarding the A-spectral distances. In Section 3 we consider the
L- and Q-spectral distances, and in Section 4 we consider the A-spectral distances between graphs belonging
to some specified sets of graphs. A computational data related to the L- and Q-spectral distances are given
in Appendix.

2. Relations between different spectral distances and some particular results

Recall from [1] that if r = λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) is the spectrum of r-regular graph G, then its L-
spectrum is r−λn(G) ≥ r−λn−1(G) ≥ · · · ≥ r−λ1(G) = 0, its Q-spectrum is λ1(G)+r ≥ λ2(G)+r ≥ · · · ≥
λn(G) + r, while the spectrum of the complement G is n− 1− r ≥ −1−λn(G) ≥ · · · ≥ −1−λ2(G). Finally,
the line graph L(G) is (2r−2)-regular with spectrum 2r−2 ≥ λ2(G)+r−2 ≥ · · · ≥ λn(G)+r−2 ≥ [−2]

nr
2 −n

(as usual, in the exponential notation the exponent stands for the multiplicity of the eigenvalue).

We consider the relations between A-, L-, and Q-spectral distances in some specific cases.

Proposition 2.1. Let G1 and G2 be n-vertex regular graphs of degree r1 and r2, respectively. If r1 ≤ r2,
then the following inequalities hold:

(i) σQ(G1, G2) ≤ σA(G1, G2) + n(r2 − r1),

(ii) σL(G1, G2) ≤ σA(G1, G2) + n(r2 − r1).

Proof (i) We get

σQ(G1, G2) =

n∑
i=1

|κi(G1)− κi(G2)| =
n∑

i=1

|(λi(G1) + r1)− (λi(G2) + r2)| ≤

n∑
i=1

|λi(G1)− λi(G2)|+
n∑

i=1

|r1 − r2| = σA(G1, G2) + n(r2 − r1).
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The statement (ii) is proved in the similar way.

Note that if G1 and G2 are regular graphs with the same degree, we have

σA(G1, G2) = σQ(G1, G2) = σL(G1, G2). (2)

Moreover, we have the following result.

Proposition 2.2. Let O(G) stands for application of line and complement of regular graph G arbitrary
number of times and in arbitrary order. Let G1 and G2 be r-regular graphs on n vertices. Then

σA(O(G1), O(G2)) = σA(G1, G2) = σL(O(G1), O(G2)) = σL(G1, G2) = σQ(O(G1), O(G2)) = σQ(G1, G2).

Proof All equalities follow from the corresponding spectra given at the beginning of the section, and the
equalities (2).

We prove an inequality.

Proposition 2.3. Given an r-regular graph G on n vertices, such that its degree is not greater than degree
of G. Then we have

σL(G,G) ≤ σA(G,G) + (n− 2)(n− 2r − 1).

Proof We have µn(G) = µn(G) = 0, and, by assumption, n− 2r − 1 ≥ 0 holds. We compute

σL(G,G) =

n−1∑
i=1

|µi(G)− µi(G)| =
n−1∑
i=1

|(r − λn−i+1(G))− (n− r + λi+1(G))| =

n∑
i=2

|λi(G) + λn−i+2(G) + n− 2r| ≤
n∑

i=2

|λi(G) + λn−i+2(G) + 1|+
n∑

i=2

|n− 2r − 1| =

n∑
i=2

|λi(G)− (−1− λn−i+2(G))|+ |λ1(G)− (n− 1− r)|+ (n− 2)(n− 2r − 1) =

n∑
i=2

|λi(G)− λi(G))|+ |λ1(G)− λ1(G)|+ (n− 2)(n− 2r − 1) =

σA(G,G) + (n− 2)(n− 2r − 1).

Remark 2.1. There can be found many graphs attaining the equality in the previous proposition. For
example, if G is the Petersen graph then both sides of the inequality are equal to 30. Conversely, if G is a
complete bipartite graph of even order n with a perfect matching removed, K−n

2 ,n2
, then the equality is attained

only if n = 2. Moreover, if n ≥ 8 we have

3n− 16 = σL

(
K−n

2 ,n2
,K−n

2 ,n2

)
< σA

(
K−n

2 ,n2
,K−n

2 ,n2

)
+ (n− 2)

(
n− 2

(n
2
− 1
)
− 1
)

= 3n− 10,

i.e. the corresponding values differ in 6.

We now turn the attention to the A-spectral distances.

Proposition 2.4. Given an n-vertex graph G, and let H is obtained from G by replacing edges uw1, . . . , uwk

with non-edges vw1, . . . , vwk. If Λ = max{λ1(G), λ1(H)}, and λ = min{λn(G), λn(H)} then

σA(G,H) ≤ Λ + λ1(G)− λn(G)− λ.
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Proof We have (see [5])

λi−1(G) ≥ λi(H) ≥ λi+1(G), for i = 2, 3, . . . , n− 1.

Using these inequalities and the eigenvalue interlacing ([2, Corollary 1.3.12]) we get

|λi(G)− λi(H)| ≤ λi−1(G)− λi+1(G), for i = 2, 3, . . . , n− 1,

and we also have

|λ1(G)− λ1(H)| ≤ Λ− λ2(G), and |λn(G)− λn(H)| ≤ λn−2(G)− λ.

Putting together we get

σA(G,H) =

n∑
i=1

|λi(G)− λi(H)| ≤ Λ + λ1(G)− λn(G)− λ.

Proposition 2.5. Given an r-regular bipartite graph G on n vertices, such that its degree is not greater
than degree of G. If |λi(G)− λi+1(G)| ≤ 1 , i = 1, ...,

⌊
n
2

⌋
, then σA(G,G) = 2(n− 2r − 1).

Proof We compute

σA(G,G) =

n∑
i=1

|λi(G)− λi(G)| = (n− 2r − 1) +

n∑
i=2

|λi(G) + λn−i+2(G) + 1| =

(n− 2r − 1) + 2

bn/2c∑
i=1

|λi(G)− λi+1(G)− 1|.

If n is odd, since λn+1
2

= 0, we get

2

bn/2c∑
i=1

|λi(G)− λi+1(G)− 1| = (n− 1)− 2
(
λ1(G)− λn+1

2

)
= n− 2r − 1,

while if n is even we get

2

bn/2c∑
i=1

|λi(G)− λi+1(G)− 1| = (n− 2)− 2
(
λ1(G)− λn/2(G)

)
+ 1− 2λn/2(G) = n− 2r − 1,

and so in both cases we get σA(G,G) = 2(n− 2r − 1).

3. L- and Q-spectral distances

The results concerning only the L- and Q-spectral distances of graphs are separated in this short section.
We first get a simple formula for the L- and Q-spectral distance between the graph and its edge-deleted
subgraph.

Proposition 3.1. Given an n-vertex graph G. If the graph H is obtained by deleting k edges from G, then
σL(G,H) = σQ(G,H) = 2k.
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Proof Assume that G has m edges, then k ≤ m holds. Let H ′ be the graph obtained by deleting an edge
from G. Then, by [2, Theorem 7.1.5], we have µi(G) ≥ µi(H

′) (i = 1, 2, . . . , n). Similarly, by [2, Theorem
7.8.13], we have κi(G) ≥ κi(H ′) (i = 1, 2, . . . , n).

Since H is obtained by deleting k edges, by successive application of the above inequalities, we get
µi(G) ≥ µi(H) (i = 1, 2, . . . , n), and κi(G) ≥ κi(H) (i = 1, 2, . . . , n), an therefore we have

σL(G,H) = σL(G,H) =

n∑
i=1

|µi(G)− µi(H)| =
n∑

i=1

(µi(G)− µi(H)) = 2m− 2(m− k) = 2k,

and similarly, σQ(G,H) = 2k.

Corollary 3.1. Let G1, G2, G
+ and G− be n-vertex graphs with m1,m2,m

+ and m− edges, respectively. If
G+ (resp. G−) is a common supergraph (resp. subgraph) of G1 and G2, then the following inequalities hold:

max{σL(G1, G2), σQ(G1, G2)} ≤ 2(2m+ −m1 −m2),

and

max{σL(G1, G2), σQ(G1, G2)} ≤ 2(m1 +m2 − 2m−).

Proof We have σL(G1, G2) ≤ min{σL(G1, G
+) + σL(G+, G2), σL(G1, G

−) + σL(G−, G2)}, and similarly for
σQ(G1, G2). Then both inequalities follow from Proposition 3.1.

Corollary 3.2. Let X = {G0, G1, ..., G(n
2)
} be the set of n-vertex graphs, where Gi is an edge-deleted sub-

graph of Gi+1 (i = 0, 1 . . . ,
(
n
2

)
− 1). We have

(i) csLX(Gi) = 2, 0 ≤ i ≤
(
n
2

)
,

(ii) csL(X) = 2,

(iii) seccLX(Gi) = max{2i, n(n− 1)− 2i},

(iv) sdiamL(X) = n(n− 1).

Proof If i < j then by Proposition 3.1, we have σL(Gi, Gj) = 2(j − i), and the proof follows.

The statements of Corollary 3.2 remain valid for the Q-spectral distances.

4. A-spectral distances in certain sets of graphs

As we noted in [3], any spectral distance is much easier considered in some specific set of n-vertex graphs
(compare [4], as well), and this is exactly what we do in this section. We take an appropriate set of graphs X
and we compute the A-spectral distance between any two graphs in X, along with the remaining quantities
defined in the opening section. As a set X we choose three different sets of graphs related to complete
bipartite graphs: Xl = {G0, G1, ..., Gk} (l = 1, 2, 3), where

1. if Gi ∈ X1 then Gi = Cn1∇Cn2∇ · · ·∇Cni∇Kni+1,ni+2,...,nk
, with nj ≥ 3 (1 ≤ j ≤ k) and n1 + n2 +

· · ·+ nk = n.

2. if Gi ∈ X2 then Gi = Kn1+n2+···+ni
∇Kni+1,ni+2,...,nk

, with n1 + n2 + · · ·+ nk = n.

3. if Gi ∈ X3 then Gi = (Kip∇Ki×(m−p))∇K(k−i)×m, with 0 < p < m and k ·m = n.
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In particular, G0 is a complete k-partite graph with m vertices in each part when G0 ∈ X3, or ni vertices
in ith part when G0 ∈ X1 or G0 ∈ X2. Then, in each case, Gi (1 ≤ i ≤ k) is obtained by inserting

appropriate edges into Gi−1 (i.e. ni edges if Gi ∈ X1, ni(ni−1)
2 edges if Gi ∈ X2 and p

2 (2m− p− 1) edges if
Gi ∈ X3).

Using the notation above, we prove the following three propositions. Before we state the first of them,
recall that the energy of a graph G, usually denoted by E(G), is equal to the sum of the absolute values of
the eigenvalues of G. In [3] we presented several situations in which the A-spectral distance is a function of
the energy. The next proposition provides another similar result.

Proposition 4.1. For X1 we have σA(Gi, Gj) =
∑j

p=i+1E(Cnp) (0 ≤ i < j ≤ k), and

(i) csAX1
(Gi) = min{E(Cni

), E(Cni+1
)}, 1 ≤ i ≤ k − 1,

(ii) csA(X1) ≤ E(Cni
), where ni = max{ni, 1 ≤ i ≤ k},

(iii) seccAX1
(Gi) = max{

∑i
p=1E(Cnp

),
∑k

p=i+1E(Cnp
)}, 1 ≤ i ≤ k − 1,

(iv) sdiamA(X1) =
∑k

p=1E(Cnp
).

Proof Denote H1 = Cn1
∇Cn2

∇ · · ·∇Cni
and H2 = Kni+1,...,nk

. Then H1 has m1 =
∑i

p=1 np vertices, while

H2 has m2 =
∑k

q=i+1 nq vertices. To determine the characteristic polynomial of Gi = H1∇H2 we use the
following formula [1, Theorem 2.7]:

PH1∇H2(x) =(−1)m2PH1(x)PH2
(−x− 1) + (−1)m1PH2

(x)PH1
(−x− 1)−

(−1)m1+m2PH1
(−x− 1)PH2

(−x− 1). (3)

The characteristic polynomial of H1 we determine by using walk-generating functions [1, Theorem 1.11]:

HH1
(x) =

1

x

(
(−1)m1

PH1
(−x+1

x )

PH1
( 1
x )

− 1

)
, (4)

wherefrom we directly get

PH1
(x) =

(−1)m1PH1
(−x− 1)

1
xHH1

( 1
x ) + 1

. (5)

Since H1 = Cn1
∇Cn2

∇...∇Cni
= Cn1

+̇Cn2
+̇...+̇Cni

we have

PH1
(x) =

i∏
p=1

PCnp
(x). (6)

We next express the characteristic polynomial of Cn

PCn
(x) = (−1)n

x− n+ 3

x+ 3
PCn

(−x− 1),

and so the relation (6) begins

PH1
(x) =

i∏
p=1

(−1)np
x− np + 3

x+ 3

−2 +

bnp/2c∑
k=0

(−1)np−k np
np − k

(
np − k
k

)
(x+ 1)np−2k

 . (7)
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Using [1, Theorem 7.20] we get another formula for the walk-generating function of H1

HH1
(x) =

∑i
p=1HCnp

(
− x

x+1

)
x+ 1− x

∑i
p=1HCnp

(
− x

x+1

) , (8)

as well as the walk-generating function of Cnp

HCnp
(x) =

HCnp
(− x

x+1 )

x+ 1− x ·HCnp
(− x

x+1 )
=

np
1− x(np − 3)

,

where HCnp
(x) =

np

1−2x . According to this, the relation (4) becomes

HH1
(x) =

∑i
p=1

np

x(np−2)+1

1− x ·
∑i

p=1
np

x(np−2)+1

. (9)

Putting (7) and (9) into (5), we obtain the characteristic polynomial of H1

PH1
(x) =

1

(2− x)i

i∏
p=1

(2− x− np)

(
1−

i∑
p=1

np
np + x− 2

)
·

i∏
p=1

−2 +

[np/2]∑
k=0

(−1)k
np

np − k

(
np − k
k

)
xnp−2k

 (10)

On the other hand, the characteristic polynomial of H2 is (cf. [1, p. 74])

PH2
(x) = xm2−(k−i)

1−
k∑

q=i+1

nq
x+ nq

 k∏
q=i+1

(x+ nq), (11)

while of its complement

PH2
(x) = (x+ 1)m2−(k−i)

k∏
q=i+1

(x− nq + 1). (12)

By substitution (7), (10), (11) and (12) into (3) we obtain the characteristic polynomial of Gi

PGi
(x) =xm2−(k−i) 1

(2− x)i

i∏
p=1

−2 +

bnp/2c∑
k=0

(−1)k
np

np − k

(
np − k
k

)
xnp−2k

 ·
i∏

p=1

(2− x− np)

k∏
q=i+1

(x+ nq)

1−
i∑

p=1

np
np + x− 2

−
k∑

q=i+1

nq
x+ nq


Now, we can conclude about the spectrum of the graph Gi. The first factor in the previous equality gives

[0]m2−(k−i), and then the product of the next two factors gives the eigenvalues of the cycles Cn1
, Cn2

, . . . , Cni

without eigenvalues equal to 2, respectively. The product of the last three factors gives the remaining k
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eigenvalues, i.e. λ1(Gi), and λn−k+2(Gi), . . . , λn(Gi), 1 ≤ i ≤ k, where the positions of these eigenvalues in
non-increasing spectrum are easily obtained by the eigenvalue interlacing. The sum of these eigenvalues is

λ1(Gi) + λn−k+2(Gi) + ...+ λn(Gi) = 2i

(since the sum of eigenvalues of the cycle Cnp
(1 ≤ p ≤ i) which is contained in the spectrum of Gi is equal

to −2).
For computation of the A-spectral distance between two graphs Gi and Gj , 0 ≤ i < j ≤ k from the set

X1 we use the above sum of the corresponding eigenvalues and the following features of their spectra:

1. λ1(Gj) > λ1(Gi) (follows directly),

2. λl(Gj) ≥ λl(Gi), l = n− k + 2, ..., n (easily verified by the induction argumentation),

3. |λl(Gj)| ≥ |λl(Gi)|, l = 2, ..., n − k + 1 (obvious, since these are the eigenvalues of the corresponding
cycles).

The A-spectral distance between two graphs Gi and Gj , 0 ≤ i < j ≤ k is:

σA(Gi, Gj) =|λ1(Gi)− λ1(Gj)|+
n−k+1∑
l=2

|λl(Gi)− λl(Gj)|+
n∑

l=n−k+2

|λl(Gi)− λl(Gj)| =

λ1(Gj)− λ1(Gi) +

n−k+1∑
l=2

(|λl(Gj)| − |λl(Gi)|) +

n∑
l=n−k+2

(λl(Gj)− λl(Gi)) =

λ1(Gj)− λ1(Gi) +

n∑
l=n−k+2

(λl(Gj)− λl(Gi)) +

j∑
p=1

E(Cnp
)− 2j −

i∑
p=1

E(Cnp
) + 2i =

j∑
p=i+1

E(Cnp
)− 2(j − i) + λ1(Gj) +

n∑
l=n−k+2

λl(Gj)− λ1(Gi)−
n∑

l=n−k+2

λl(Gi) =

j∑
p=i+1

E(Cnp)− 2(j − i) + 2j − 2i =

j∑
p=i+1

E(Cnp
).

Using the above equality we compute the quantities (i)–(iv) directly.

Remark 4.1. The L- and Q-spectral distances between the graphs in X1 are simply computed. Namely,
each graph Gi is an induced subgraph of Gj, so using Proposition 3.1, we get

σL(Gi, Gj) = σQ(Gi, Gj) = 2

j∑
p=i+1

np, 0 ≤ i < j ≤ k.

Forward, we have:

(i) csLX1
(Gi) = csQX1

(Gi) = min{2ni, 2ni+1}, 0 ≤ i < j ≤ k, and then csL(X1) = csQ(X1) ≤ 2 max{np, 1 ≤
p ≤ k}.

(ii) seccLX1
(Gi) = seccQX1

(Gi) = max{2
∑i

p=1 np, 2
∑k

p=i+1 np}, 0 ≤ i < j ≤ k, and then sdiamL(X1) =

sdiamQ(X1) = 2
∑k

p=1 np = 2n.

Proposition 4.2. For X2 we have σA(Gi, Gj) = 2
∑j

p=i+1 np − 2(j − i) (0 ≤ i < j ≤ k), and
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(i) csAX2
(Gi) = min{2(ni − 1), 2(ni+1 − 1)}, 1 ≤ i ≤ k − 1,

(ii) csA(X2) = max{2(ni − 1), 1 ≤ i ≤ k},

(iii) seccAX2
(Gi) = max{2

∑i
p=1 np − 2i, 2

∑k
p=i+1 np − 2(k − i)}, 1 ≤ i ≤ k − 1,

(iv) sdiamA(X2) = σ(G0, Gk) = 2(n− k).

Proof Similarly to the previous proposition we get the characteristic polynomial of Gi (0 ≤ i ≤ k) as a
characteristic polynomial of the complete product of two graphs:

PGi
(x) = x

∑k
q=i+1 nq−(k−i)(x+ 1)

∑i
p=1 np−1

k∏
s=i+1

(x+ ns) ·

(
(x+ 1)

(
1−

k∑
l=i+1

nl
nl + x

)
−

i∑
p=1

np

)
.

The first factor in the previous relation gives [0]
∑k

q=i+1 nq−(k−i), while the second gives [−1]
∑i

p=1 np−1.
The last two factors give eigenvalue λ1(Gi) and the (k − i) eigenvalues λn−(k−i)+1, ..., λn.

For computation of the A-spectral distance between two graphs Gi and Gj from the set X2 for 0 ≤ i <
j ≤ k we use the following feature of their spectra:

1. λ1(Gj) > λ1(Gi) (follows directly),

2. λl(Gj) ≥ λl(Gi), l =
∑k

q=1 nq − (k − j) + 1, ..., n (induction argument).

So we have:

σA(Gi, Gj) =λ1(Gj)− λ1(Gi) +

k∑
p=i+1

np −
k∑

q=j+1

nq + 2(i− j) +

n∑
l=n−(k−j)+1

(λl(Gj)− λl(Gi)) =

λ1(Gj)− λ1(Gi) +

k∑
p=i+1

np −
k∑

q=j+1

nq + 2(i− j)−

(
i∑

p=1

np − 1

)
+ λ1(Gi) +

(
j∑

q=1

nq − 1

)
− λ1(Gj) =

2

j∑
l=i+1

nl − 2(j − i).

And the quantities (i)–(iv) are easily computed.

Proposition 4.3. For X3 we have

σA(G0, Gi) = 2(ip− λn−k+1(Gi)− 1), 1 ≤ i ≤ k, (13)

σA(Gi, Gj) = 2
(
p(j − i) +

(
λn−k+1(Gi)− λn−k+1(Gj)

))
, 1 ≤ i < j ≤ k, (14)

and

(i) csAX3
(Gi) = min{σ(Gi−1, Gi), σ(Gi, Gi+1)}, 1 ≤ i ≤ k − 1,

(ii) csA(X3) = max{σ(Gi, Gi+1), 0 ≤ i ≤ k − 1},

(iii) seccAX3
(Gi) = max{σ(G0, Gi), σ(Gi, Gk)}, 1 ≤ i ≤ k − 1,
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(iv) sdiamA(X3) = σ(G0, Gk).

Proof Denote H1 = Kip∇Ki×(m−p) and H2 = K(k−i)×m. We first determine the characteristic polynomial
of H1. According to the formula for the complete product of two regular graphs [1, Theorem 2.8]), we get

PH1(x) = (x+ 1)ip−1xi(m−p−1)(x+m− p)i−1((x− ip+ 1)(x− (i− 1)(m− p))− i2p(m− p)). (15)

Using (3) we compute the characteristic polynomial of H1∇H2

PGi
(x) = PH1∇H2

(x) = xk(m−1)−ip(x+ 1)ip−1(x+m− p)i−1(x+m)k−i−1 · F

with F = (x+m)F ′ + (x+ 1)(x+m− p)(x−m(k− i− 1))− (x+ 1)(x+m− p)(x+m), where F ′ denotes
the last factor of the right hand side of (15).

From the last equality, we compute the eigenvalues of Gi (1 ≤ i ≤ k): [0]k(m−1)−ip, [−1]ip−1, [−m+p]i−1,
[−m]k−i−1, while the factor F gives the three remaining eigenvalues: λ1(Gi) (Gi is a connected complete
multipartite graph, so there is a unique positive eigenvalue), λn−k+1(Gi) and λn−k+1+i(Gi), where the
positions of the last two eigenvalues are easily obtained by the fact that H1 is an induced subgraph of Gi,
and the eigenvalue interlacing. The sum of these three eigenvalues λ1(Gi) + λn−k+1(Gi) + λn−k+1+i(Gi) =
m(k − 2) + p− 1 is used in the below computation.

For 1 ≤ i < j ≤ k − 1 we get

σA(Gi, Gj) =

n∑
l=1

|λl(Gi)− λl(Gj)| =
∑

l /∈ {1, n− k + 1,
n− k + 1 + i, n− k + 1 + j}

|λl(Gi)− λl(Gj)|+ |λ1(Gi)− λ1(Gj)|+

|λn−k+1(Gi)− λn−k+1(Gj)|+ |λn−k+1+i(Gi)− (p−m)|+ | −m− λn−k+1+j(Gj)|.

Using λ1(Gj) > λ1(Gi), λn−k+1(Gj) < λn−k+1(Gi), and λn−k+1+i(Gi) ≤ p −m,λn−k+1+j(Gj) ≥ −m
(follows from the eigenvalue interlacing), and computing the first sum of the right hand side of the above
equality we get (13). Further, including the spectrum of G0, and the eigenvalues n−m, [0]n−k, [−m]k−1, we
get (14).

Finally, the quantities (i)–(iv) are computed directly.

Appendix

We compute the L- and Q-spectral distances between every two graphs with specific order n. Some
data obtained are presented in Table 1. There, the 1st column contains the total number of graphs with n
vertices, the 2nd column contains the least spectral distance (distinct from zero), the 3rd column contains
the largest spectral distance, the 4th column involves the number of pairs of (non-isomorphic) cospectral
graphs, while the remaining three columns contain the number of spectral distances belonging to the specific
numerical ranges.

In Table 2 we present similar computational results for the L-spectral distances of graphs that belong to
the following 3 classes:

1. connected regular graphs,

2. connected bipartite graphs,

3. trees.

Since the L- and Q-spectral distances coincide whenever both corresponding graphs belong to one of the
above classes, the same results hold for the Q-spectral distances.

The similar data on the A-spectral distances are given in [3].
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n ] graphs min σL 6= 0 max σL σL = 0 0 < σL ≤ 0.5 0 < σL ≤ 1 0 < σL ≤ 2
3 4 2 6 0 0 0 3
4 11 2 12 0 0 0 20
5 34 0.83 20 0 0 2 124
6 156 0.47 30 2 4 48 1357
7 1044 0.36 42 74 26 976 25813
8 12346 0.16 56 1112 1582 55148 1515175

n ] graphs min σQ 6= 0 max σQ σQ = 0 0 < σQ ≤ 0.5 0 < σQ ≤ 1 0 < σQ ≤ 2
3 4 2 6 0 0 0 3
4 11 2 12 1 0 0 20
5 34 0.78 20 2 0 5 129
6 156 0.34 30 8 9 85 1450
7 1044 0.25 42 54 119 1813 30720
8 12346 0.13 56 694 3397 93430 2064027

Table 1: L- and Q-spectral distances of graphs with n (3 ≤ n ≤ 8) vertices.

n ] graphs minσL 6= 0 maxσL σL = 0 0 < σL ≤ 0.5 0 < σL ≤ 1 0 < σL ≤ 2

connected
regular graphs

6 5 4 18 0 0 0 0
7 4 4 28 0 0 0 0
8 17 2.64 40 0 0 0 0
9 22 0.93 54 0 0 2 16
10 167 0.90 70 4 0 14 471
11 539 0.52 88 28 0 204 8636

connected
bipartite graphs

4 3 2 2 0 0 0 3
5 5 1.38 4 0 0 0 4
6 17 0.47 8 0 1 2 47
7 44 0.68 12 2 0 12 201
8 182 0.50 18 6 1 102 1903
9 730 0.31 24 54 22 777 16585
10 4032 0.15 32 216 267 9009 243043
11 25598 0.09 40 1718 2077 114346 5051403

trees

5 3 1.38 4 0 0 0 1
6 6 0.92 6 0 0 1 7
7 11 0.98 8.49 0 0 2 20
8 23 0.52 10.83 0 0 7 87
9 47 0.42 13.06 0 1 37 294
10 106 0.24 15.59 0 3 126 1249
11 235 0.23 17.98 3 19 472 5222

Table 2: L (and Q)-spectral distances for some particular classes of graphs.
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