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Abstract

We consider signed graphs Ġ whose spectra are comprised of exactly two (distinct) eigenvalues that differ 
only in sign, abbreviated to signed graphs with two symmetric eigenvalues. We obtain some relationships 
between such signed graphs and their star complements. Our results include structural examinations and 
constructions of infinite families of signed graphs with two symmetric eigenvalues. We also determine 
the bases for the eigenspaces of the eigenvalues of Ġ in terms of the eigenspaces of its star complement. 
In particular, we consider the case in which a star complement has two symmetric eigenvalues, as well.

Keywords: Adjacency matrix; signed graph eigenvalue; signed graph eigenspace; signed graph de-
composition; star complement

1. Introduction

A signed graph Ġ = (G, σ) is an unsigned underlying graph G = (V, E) with a signature σ that maps 
the set of edges into the multiplicative group {+1, −1}. The order of Ġ refers to the cardinality of its 
vertex set. The edge set of Ġ contains positive and negative edges. Evidently, every unsigned graph can 
be viewed as a signed graph without negative edges.

The adjacency matrix A ˙ is the adjacency matrix of G in which all ones related to negative edges 
are replaced with minus ones. The eigenvalues of Ġ are the eigenvalues of A ˙ .

A characterization of signed graphs having a comparatively small number of eigenvalues is listed as 
an open problem in (Belardo et al., 2018); of course, we refer to distinct eigenvalues. It is known that 
a signed graph with 2 eigenvalues must be regular; moreover, strongly regular in the sense of (Stanić 
II, 2019). Those with vertex degree at most 4 are determined in (Hou et al., 2019; McKee and Smyth, 
2007; Stanić, 2020). It is worth mentioning that signed graphs with 2 eigenvalues play a crucial role 
in Huang’s resolution of the Sensitivity Conjecture (Huang, 2019); see also (Stanić I, 2019). Some 
particular constructions can be found in (Ramezani et al., 2022; Stanić I, 2019; Stanić II, 2019).

In this study we focus our attention on signed graphs with exactly 2 eigenvalues±θ, with θ ∈ R. For
short, we abbreviate these signed graphs to signed graphs with 2 symmetric eigenvalues. We consider
their decompositions into 2 induced subgraphs such that one of them is the star complement for one or
both eigenvalues. We call such a decomposition a star complementary decomposition. Other kinds of
graph decompositions can be found in (Romero-Valencia et al., 2019). We establish some structural and
spectral relations between a star complement and the other subgraph which can also be considered as
the relations between the signed graph under consideration and its star complement. Then we use star
complements to construct infinite families of signed graphs with 2 symmetric eigenvalues, and we also
use the eigenspace bases of star complements to build the bases for the eigenspaces of the eigenvalues
±θ. Throughout the paper we frequently consider the particular case in which a star complement is also
a signed graph with 2 symmetric eigenvalues. Our results can be encapsulated into those concerning
signed graphs whose spectra are symmetric (with respect to the origin). We recall that in the framework
of unsigned graph such graphs are fully characterised since a graph has a symmetric spectrum if and only
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if it is bipartite. In the domain of signed graphs the problem of characterizing such signed graphs is more
intriguing. Some recent results can be found in (And̄elić et al., 2020; Belardo et al., 2018; Ghorbani et
al., 2020; Hou et al., 2019; Ramezani et al., 2022; Stanić I, 2019; Stanić II, 2019; Stanić, 2020).

Here is the contents of the remaining sections. The next section contains terminology and notation
along with some known results. Section 3 is reserved for the structural and spectral examinations, and
constructions of some examples. Eigenspace bases are established in Section 4.

2. Preliminaries

For the adjacent vertices i, j of a signed graph, we write i ∼ j. The sign of the corresponding edge is
emphasized by i +∼ j or i −∼ j.

If there is a monomial (0, 1,−1)-matrix D such that AḢ = D−1AĠD holds for some signed graphs
Ġ and Ḣ , then we say that these signed graphs are switching isomorphic. Evidently, switching isomor-
phic signed graphs have the common spectrum. We say that signed graphs are cospectral if they are
not switching isomorphic, but have the same spectrum. Moreover, in this study switching isomorphic
signed graphs are mutually identified. The adjacency matrix−AĠ determines the negation of Ġ, usually
denoted by−Ġ. A (not necessarily induced) cycle contained in a signed graph is positive (resp. negative)
if it has an even (odd) number of negative edges.

Let θ denote an arbitrary eigenvalue of Ġ, and let k denote its multiplicity. A subset X of V (Ġ) is
a star set for θ if the size of X is k and θ does not occur in the spectrum of Ġ −X . Further, Ġ −X is
abbreviated to be a star complement for θ. The following generalization of the Reconstruction Theorem
(Cvetković et al., 2004, Theorem 5.1.7) can be found in (Ramezani et al., 2020; Stanić I, 2019).

Theorem 2.1. Let

AĠ =

(
AX B>

B C

)
, (1)

where AX is the k × k adjacency matrix of the subgraph determined by X ⊂ V (Ġ). Then X is a star
set for θ if and only if θ does not appear in the spectrum of C and

θI −AX = B>(θI − C)−1B. (2)

The eigenspace of θ consists of (
x

(θI − C)−1Bx

)
, (3)

for x ∈ Rk.

In relation to the previous theorem, we define

〈x,y〉 = x>(θI − C)−1y.

Also, for u ∈ X , bu stands for the characteristic vector of the neigbourhood of u in the signed graph
Ġ−X . Then Equation (2) yields:

〈bu,bv〉 =


θ if u = v
0 if u 6∼ v, u 6= v

1 if u −∼ v
−1 if u +∼ v.

For a signed graph Ḣ , an isolated vertex u and U ⊆ V (Ḣ), we write Ḣ(U) for a signed graph gained
by inserting an edge between u and every vertex of U . An edge between u and U is allowed to be of any
sign. Next u, U and Ḣ(U) are said to be a good vertex, a good set and a good extension for θ whenever
θ does not appear in the spectrum of Ḣ , but does appear in that of Ḣ(U). It follows from Theorem 2.1
that u is good for θ if and only if 〈bu,bu〉 = θ. We say that the vertices u, v are compatible for θ if both
are good and 〈bu,bv〉 ∈ {0, 1,−1}. If so, then we also say that the corresponding sets (U for u and V
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for v) are compatible. If u, v are good and Ḣ(U, V ) is obtained by joining both u and v to Ḣ according
to their characteristic vectors, then we deduce from Theorem 2.1 that 〈bu,bv〉 = 0 (resp. 〈bu,bv〉 = 1,
〈bu,bv〉 = −1) if and only if the multiplicity of θ in Ḣ(U, V ) is two and also u � v (resp. u −∼ v,
u

+∼ v). In addition, from the same theorem we see that a set X whose elements are good, considered
separately and in all possible pairs, induces a good extension, say Ġ, where X and Ḣ can be seen as a
star set and the corresponding star complement for θ, respectively.

3. Star complementary decompositions of signed graphs with 2 symmetric eigenvalues

We begin with the following contribution to the matrix theory.

Theorem 3.1. Let

M =

(
N1 Bᵀ

B N2

)
be a 2n×2n real symmetric matrix with exactly 2 eigenvalues θ and−θ. If the n×n principal submatrix
N2 avoids ±θ in the spectrum, then N1 and −N2 are similar.

Proof. Since the minimal polynomial of M is

x2 − θ2 (4)

we have M2 − θ2I = O. Concerning the top-right block of M2, we get N1B
ᵀ = −BᵀN2. If x is an

eigenvector of N2 afforded by ν, then we have

N1B
ᵀx = −BᵀN2x = −νBᵀx, (5)

which means that Bᵀx is an eigenvector of N1 afforded by −ν; note that Bᵀx = 0 leads to ν ∈ {−θ, θ}
as

M

(
0
x

)
=

(
0
N2x

)
= ν

(
0
x

)
.

Since the vectors Bᵀx belong to the image of Bᵀ, we get that Bᵀ is invertible, which leads to N1 =
−BᵀN2(B

ᵀ)−1, and we are done.

Consequently, if N2 avoids ±θ in the spectrum, N1 also avoids these eigenvalues. We now proceed
with signed graphs.

Corollary 3.2. If Ġ is a signed graph with eigenvalues ±θ and a common star complement Ḣ for these
eigenvalues, then the adjacency matrix of the signed graph Ẋ determined by the star set is similar to
A−Ḣ and corresponds to the star complement for ±θ.

Proof. The fact that AẊ is similar to A−Ḣ follows from Theorem 3.1. Since θ and −θ do not belong to
the spectrum Ẋ , we get that Ẋ is a star complement for both eigenvalues.

Corollary 3.3. Under the notation of Corollary 3.2, the following statements hold:

(i) If there is no star complement for ±θ which is cospectral with Ḣ , then the signed graph Ẋ is a
negation of Ḣ;

(ii) The vertices of Ġ can be arranged in such a way that B is symmetric.

Proof. Under the assumption of this corollary, A−Ḣ is a permutationally similar to AḢ , which leads to
the assertion of (i).

Next, the vertices of Ġ can be arranged such that

AĠ =

(
−AḢ Bᵀ

B AḢ

)
.

Since −Ḣ is also a star complement for ±θ, we have that bu determines the neighbourhood in Ḣ of
a vertex u ∈ V (−Ḣ) if and only if bᵀ

u determines the neighbourhood in −Ḣ of the copy of u in V (Ḣ).
This implies B = Bᵀ.
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Fig. 1. The signed graph with spectrum
[
2t, (−2)t

]
, t ≥ 3.

Example 3.4. We know from (Hou et al., 2019; Stanić, 2020) that the signed graph of Fig. 1 has spectrum[
2t, (−2)t

]
, where t ≥ 3. According to the latter reference, this is the signed line graph of a signed graph

derived from the unsigned cycleCt by adding t negative edges in such a way that each of them is incident
with a different pair of adjacent vertices of Ct.

By (Cvetković et al., 2004, Theorem 5.1.6), a star complement can be taken to be connected. If
so, then it can be seen that a connected star complement for both eigenvalues ±2 is either a negative
quadrangle with two paths of arbitrary lengths attached at its non-adjacent vertices, the graph obtained
by attaching two hanging edges at a pendant vertex of a path or (for t even) a negative cycle Ċt. For t
odd a positive (resp. negative) cycle Ċt is a star complement for −2 (2). If Ḣ is one of star complements
for both eigenvalues, then the star set induces the signed graph that switches to Ḣ , as the negation of an
even cycle switches to itself. If Ḣ is an odd cycle, then the star set induces the signed graph that switches
to −Ḣ .

If, in particular, Ġ is a complete signed graph of order n with eigenvalues ±θ, then its adjacency
matrix is the so-called symmetric conference matrix, i.e., it satisfies A2

Ġ
= AĠA

ᵀ
Ġ
= (n − 1)I . In this

case the (unsigned) graph induced by negative edges is called (by Seidel) a strong graph. (In general, the
graph induced by negative edges is strong if (AĠ−λ1I)(AĠ−λ2I) = (n−1+λ1λ2)J , for λ1, λ2 ∈ R,
and our case is obtained for λ1 = −λ2 = θ =

√
n− 1.) An equivalence class of strong graphs obtained

from Ġ with 2 symmetric eigenvalues coincides with the regular two-graph equivalence class (Seidel,
1973). It is known that a graph is strong if it is strongly regular and satisfies n = 2(r − λ); r is the
vertex degree and λ is one of the remaining eigenvalues. Also, complete bipartite graphs and cones over
conference graphs are strong. We know from (Haemers and Higman, 1989) that if Ġ is complete with 2
symmetric eigenvalues and Ḣ is a common star complement for these eigenvalues, then Ḣ switches to
a signed graph in which negative edges give rise to a conference graph, along with another unconfirmed
possibility for Ḣ . This brings us to the following example.

Example 3.5. Let Ġ be a complete signed graph of order n that switches to a signed graph in which
negative edges give rise to a strongly regular graph satisfying n = 2(r − λ). Then Ġ contains a star
complement that switches to a signed graph in which negative edges give rise to a conference graph. The
Petersen graph or its complement and the strongly regular graphs with 26 vertices serve as examples for
strongly regular graphs that arise from Ġ in the previous setting.

We proceed with some particular constructions.

Theorem 3.6. For a signed graph Ḣ with eigenvalues±λ and whose vertices are labelled by 1, 2, . . . , t,
let N(i) stand for the set of neighbours of a vertex i of Ḣ . The vertex ui and the corresponding set Ui
are good for Ḣ being a star complement for θ whenever

(i) θ =
√
λ2 + 1 and Ui = {i}, for 1 ≤ i ≤ t or
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(ii) θ = λ
√
2 and Ui = N(i) with σ(uij) = σ(ij) (j ∈ N(i)), for 1 ≤ i ≤ t.

All vertices of (i) and (ii) are mutually compatible, with ui � uj (resp. ui
+∼ uj , ui

−∼ uj) if i � j (i −∼ j,
i

+∼ j).

Proof. Since the minimal polynomial of AḢ is given by (4), we get (cf. (Cvetković et al., 2004, Propo-
sition 5.1.11))

(θI −AḢ)
−1 =

1

θ2 − λ2
(AḢ + θI). (6)

For (i) we have

〈bui ,bui〉 =bᵀ
ui

1

θ2 − λ2
(AḢ + θI)bui = bᵀ

ui(AḢ +
√
λ2 + 1I)bui

=bᵀ
uiAḢbui +

√
λ2 + 1bᵀ

uiIbui =
√
λ2 + 1,

so Ui is good.
Concerning the compatibility, we get

〈bui ,buj 〉 =bᵀ
ui

1

θ2 − λ2
(AḢ + θI)buj = bᵀ

ui(AḢ +
√
λ2 + 1I)buj

=


0 if i � j

−1 if i +∼ j

1 if i −∼ j,

which completes the first item.
For (ii) we have

〈bui ,bui〉 =bᵀ
ui

1

θ2 − λ2
(AḢ + θI)bui = bᵀ

ui(AḢ + λ
√
2I)bui

=
1

λ2
bᵀ
uiAḢbui +

√
2

λ
bᵀ
uiIbui = λ

√
2,

since

bᵀ
uiAḢbui =

(
bui · bu1 ,bui · bu2 , . . . ,bui · but

)
bui =

(
0, 0, . . . , 0,bui · bui , 0, 0, . . . , 0

)
bui = 0.

So Ui is good.
Concerning the compatibility, we get

〈bui ,buj 〉 =
1

λ2
bᵀ
uiAḢbuj +

√
2

λ
bᵀ
uiIbuj

=


0 if i � j

−1 if i +∼ j

1 if i −∼ j,

since bᵀ
uiAḢbuj is 0 (resp. −λ2, λ2) if i � j (i +∼ j, i −∼ j) and bᵀ

uiIbuj = 0 for i 6= j.

As a consequence, we have the following.

Theorem 3.7. A signed graph Ḣ with eigenvalues ±λ is a star complement in the signed graph Ġ
determined by

AĠ =

(
−AḢ I
I AḢ

)
or AĠ =

(
−AḢ AḢ
AḢ AḢ

)
for ±θ where in the former case θ =

√
λ2 + 1 and in the latter case θ = λ

√
2.
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Fig. 2. The signed graph with spectrum
[√

6
t
, 0t,−

√
6
t]
, t ≥ 3.

Proof. The result follows by replacing θ with −θ in the proof of Theorem 3.6.

In (Ramezani et al., 2022) constructions of non-regular signed graphs having just 3 eigenvalues are
considered. Here we proceed with a construction of a family of such signed graphs which may be
interesting because, apart from non-regularity, it has another relevant property: the eigenvalues are equal
in multiplicity.

Theorem 3.8. The signed graph Ġ illustrated in Fig. 2 has spectrum
[√

6
t
, 0t,−

√
6
t]
, t ≥ 3.

Proof. Let Ḣ denote the signed graph of Fig. 1. If A is its adjacency matrix, then (±
√
6I − A)−1 =

1
2(A±

√
6I). If u is a vertex adjacent to the pair of vertices of Ḣ with 4 common neighbours (as in the

figure) then

〈bu,bu〉 =bᵀ
u

1

2
(A±

√
6I)bu =

1

2

(
bᵀ
uAbu ±

√
6bᵀ

uIbu
)
= ±
√
6,

as bᵀ
uAbu = 0, so u is a good vertex for Ḣ and±

√
6. Similarly, if u, v are good vertices, then 〈bu,bv〉 =

0, as bᵀ
uAbv = bᵀ

uIbv = 0. Therefore u, v are compatible as non-neighbours. It follows that the
multiplicity of ±

√
6 in Ġ is t, so it remains to prove that zero appears with the same multiplicity. It is

sufficient to show that zero shares the same star complement in Ġ. As before we get (0I − A)−1 = 1
4A

(which can also be seen by considering the minimal polynomial of A). We further obtain 〈bu,bu〉 =
〈bu,bv〉 = 0, and the result follows.

4. Eigenspaces of signed graphs with 2 symmetric eigenvalues

Here we denote by Ġ an arbitrary signed graph with eigenvalues±θ and assume that its adjacency matrix
is given by Equation (1). Let further Ḣ stand for a star complement for±θ. According to Equation (5), if
x is an eigenvector of Ḣ , then we have that Bᵀx figures as an eigenvector of AX . By (3), the eigenspace

of ±θ is spanned by the vectors
(

yi
(±θI −AḢ)

−1Byi

)
, 1 ≤ i ≤ t, where y1,y2, . . . ,yt make a basis

of Rt. One choice for the yis is the canonical basis of Rt in which case we get(
ei

(±θI −AḢ)
−1bᵀ

i

)
, 1 ≤ i ≤ t, (7)

where bᵀ
i is the ith column of Bᵀ. Another choice is to take yi = Bᵀxi where x1,x2, . . . ,xt make the

full system of linearly independent eigenvectors of Ḣ . In this case we get(
Bᵀxi

(±θI −AḢ)
−1BBᵀxi

)
, 1 ≤ i ≤ t. (8)
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Indeed, Bᵀxi are linearly independent which can be seen by observing the proof of Theorem 3.1.
We record the previous discussion as the following statement.

Theorem 4.1. Suppose that Ġ is a connected signed graph whose adjacency matrix is given by Equa-
tion (1) and whose spectrum is [θt,−θt]. If there is a star complement for both eigenvalues of Ġ, then
the eigenspaces of its eigenvalues are determined by any of bases (7) or (8).

Observe that both bases are determined irrespective of AX . By virtue of Corollary 3.3, there is a
switching of Ġ is which B is symmetric, and in this case the bases can be additionally simplified.

We proceed with the case in which Ḣ has 2 symmetric eigenvalues.

Corollary 4.2. Suppose that Ġ is a connected signed graph whose adjacency matrix is given by Equa-
tion (1) and whose spectrum is [θt,−θt]. If Ġ contains a star complement (for±θ) with spectrum [λ,−λ],
then the eigenspaces of the eigenvalues ±θ are spanned by(

ei
1

θ2−λ2 (AḢ ± θI)b
ᵀ
i

)
, 1 ≤ i ≤ t,

or (
Bᵀxi

1
θ2−λ2 (AḢ ± θI)BB

ᵀxi

)
, 1 ≤ i ≤ t.

Proof. The result follows from Equation (6) and the previous theorem.

The r-dimensional cube Qr is an r-regular graph with 2r vertices whose vertex set consists of all
binary r-tuples. Vertices are joined by an edge precisely if they coincide in r − 1 coordinates. This
cube can be viewed as the underlying graph of a set of r-dimensional signed cubes. In particular, we
know from (Stanić I, 2019) that there is the unique r-dimensional signed cube with negative quadrangles;
when say unique we mean up to switching isomorphism. Its spectrum is [

√
r,−
√
r] and, with possible

relabelling of the vertices, its adjacency matrix is

AQ̇r
=


O Nᵀ I O
N O O −I
I O O Nᵀ

O −I N O

 ,

where the 2× 2 top-left block is AQ̇r−1
.

Corollary 4.3. If x1 =

(
x11

x12

)
,x2 =

(
x21

x22

)
, . . . , xr−1 =

(
xr−1,1
xr−1,2

)
is the full set of linearly indepen-

dent eigenvectors of the (r − 1)-dimensional cube with negative quadrangles Q̇r−1, where xi1 and xi2
are equal in length, then the eigenspaces of ±

√
r of Q̇r are spanned by(

ei
(AḢ ±

√
rI)bi

)
, 1 ≤ i ≤ r − 1,

or  xi1
xi2

(
√
r − 1±

√
r)xi

 , 1 ≤ i ≤ r − 1.

Proof. Since B = Bᵀ =

(
I O
O −I

)
and (±

√
rI − AḢ)

−1 = AH ±
√
rI , the result follows from

Corollary 4.2.

Remark 4.4. A weighing matrix M of weight r is a (0, 1,−1)-matrix satisfying MᵀM = rI . Through-
out the paper we established constructions of certain families of signed graphs having 2 symmetric eigen-
values. We note that adjacency matrices of these signed graphs can be recognized as weighing matrices
whose weights are equal to the vertex degree in the corresponding signed graph. Weighing matrices are
considered in (Harada and Munemasa, 2012) and some therein references.
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And̄elić, M., Koledin, T., & Stanić, Z. (2020). On regular signed graphs with three eigenvalues, Discuss. 
Math. Graph Theory, 40, 405–416.
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Romero-Valencia, J., & Hernández-Gómez, J.C. & Reyina-Hernandez, G. (2019). On the 
inverse degree index and decompositions in graphs, Kuwait J. Sci., 46, 14–22.

Seidel, J.J. (1973). Survey of two-graphs. In Colloquio Internazionale sulle Teorie Combinatorie (pp. 
481–511). Accademia Nazionale dei Lincei, Rome.
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Stanić, Z. (2019). On strongly regular signed graphs, Discrete Appl. Math., 271, 184–190.
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