
Univ. Beograd. Publ. Elektrotehn. Fak.

Ser. Mat. 16 (2005), 88–93.

Available electronically at http: //pefmath.etf.bg.ac.yu

A GAME BASED ON SPECTRAL GRAPH

THEORY

Zoran Stanić

We present a mathematical game for two players based on spectral graph
theory. We solve some cases and discuss a general strategy for unsolved ones.
In addition, we present some data on graphs with integer index.

1. INTRODUCTION

We are focused on undirected graphs without loops or multiple edges, al-
though the game, which we are going to describe, can be modified for the excluded
cases, too. The eigenvalues of adjacency matrix of graph G are real and they form
the graph spectrum. The largest eigenvalue is also called the graph index and it
is usually denoted by r (or r(G)). As a consequence of the famous theorem of
Frobenius from the matrix theory, the whole spectrum lies in the segment [−r, r].
The graph index is intensively studied (together or independently of the rest of
spectrum) and there are many literature and papers in this topic (see, for instance,
[2], [4]). Here we recall some of its properties which we will use in the future.
Spectrum of a disconnected graph is the union of the spectra of its components.
The index of a connected graph is greater than index of any of its proper induced
subgraphs, while in the case of disconnected graphs the index, of course, has to be
attained in some component. As another consequence of the mentioned theorem
of Frobenius, the index of a connected graph is its simple eigenvalue, while a dis-
connected graph can have the index of a greater multiplicity. Therefore, inserting
a new edge into a connected graph implies the increasing of its index; in the case
of a disconnected graph the index may remain unchanged.
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Through the rest of text, the first and the second player are called F and
S, respectively. Let G be graph on n vertices v1, v2, . . . , vn, without edges and let
m ∈ R such that 1 ≤ m < n − 1. Two players alternately insert one edge into G
until index r becomes (strictly) greater than m. The player who has inserted the
last edge loses the game. The question is: Which player has a winning strategy?
(Obviously, for finite n, somebody wins after a sufficient number of moves.) The
previous simple description of the game precedes to very complicated situation in
general. However, there is a trivial case: m = 1. There F wins in cases n = 3 + 4i
and n = 6 + 4i, while S wins in cases n = 4 + 4i and 5 + 4i, i = 0, 1, 2, . . . .

As we know, an eigenvalue of arbitrary graph is either integer or irrational
number. Here, we focus our attention on the case when m is an integer, while the
remaining situation can be a topic of some future research.

2. THE GAME FOR m = 2

Consider the case m = 2. In order to solve it, we need the of set graphs with
property r = 2. These graphs are known as Smith graphs (see [5]) and they are
depicted on Figure 1. Note that the first of displayed graphs is known as a Cn,
while in the second graph l ≥ 0 denotes the length of the corresponding path and
for ` = 0 this graph reduces to K1, 4. It is known that every graph with index r < 2
is contained in some Smith graph, every connected graph with index r = 2 is one
of the Smith graphs and every graph with index r > 2 contains some Smith graph.
This nice property of Smith graphs enables us to prove the following theorem.

Figure 1.
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Theorem 1. In case m = 2, F has the winning strategy in cases n = 6 + 4i and
n = 7+4i, while S has the winning strategy in cases n = 4+4i and n = 5+4i, i =
0, 1, 2, . . . .

Proof. It is easy to prove the statement in case i = 0 (by hand, or by using the
computer). Suppose that the statement holds for all integers less than i and prove
it for i. Without loosing the generality, suppose that F in his first move inserts the
edge v1v2.

Case 1: n = 4 + 4i. If S plays v2v3, he directly loses the game (F makes a cycle
(Smith graph) of vertices v1, v2 and v3, and wins the game on the rest of the
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graph by hypothesis.) Therefore, S has to play v3v4. Now, we have 3 possible
moves for F (up to isomorphism): v2v3, v4v5 and v5v6. On v2v3, S plays v1v4 and
wins by hypothesis. On v4v5, S plays v2v4. Now, there are 4 possible moves for F :
v2v6 (with this move F has just formed Smith graph and he loses by hypothesis),
v1v6, v3v6 and v6v7 (in these 3 cases S forms the Smith graph by v1v7, v5v7 and
v2v8, respectively and he wins by hypothesis). The remaining case is when F plays
v5v6 in his second move. On that, S plays v7v8 and so on. Because of n = 4 + 4i,
F is the one who (before or later) must join some vertex of degree d > 0 to some
other vertex. It is an easy exercise to prove that he loses after that move (similarly
as in previous consideration).

Case 2: n = 5+4i. After S’s move v2v3, F has 4 possible moves: v1v3 (this forming
of Smith graph leads directly to defeat), v2v4, v3v4 and v4v5 (in all cases S forms
the Smith graph and wins, by v2v5, v1v4 and v1v3, respectively).

Case 3: n = 6 + 4i. S has 2 possible moves: v2v3 and v3v4 (F ’s answer to one of
these moves is the other one, which implies the same situation in both cases after
his second move). Now, if S forms the Smith graph he loses, otherwise F will form
Smith graph in his next move and S is defeated, again.

Case 4: n = 7 + 4i. In the most complicated situation F wins with S’s strategy
from the end of Case 1. Therefore, the proof will be omitted as an easy exercise,
again. The remaining situations are simple.

This completes the proof.

Figure 2.
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For given order n and integer m, (1 ≤ m ≤ n − 2) let us consider the set of
maximal graphs of order n, with property r ≤ m (i. e. index r becomes strictly
greater than m by inserting an arbitrary edge). Note that these graphs do not have
to be connected. Denote the set of these graphs by Mn,m = {G1, G2, . . . , Gk}.
Hence, the final goal of our game can be preformulated in the following way: the
looser is the player who first has made a proper supergraph of one of graphs from
the set Mn,m. Therefore, the mentioned set plays a crucial role in game, because
the interest of each player is to construct one of its members Gi, i ∈ {1, 2, . . . k}
in order to force the other player to form a proper supergraph of Gi.

Note that the set Mn,m can be partitioned in two subsets: M=
n,m = {G :

G ∈Mn,m, r(G) = m} and M<
n,m = {G : G ∈Mn,m, r(G) < m}. Unfortunately,

mentioned set is easily describable only in the case m = 2. The following two
lemmas hold.

Lemma 1. A connected graph of order n belongs to set M<
n,2 if and only if it has

a form as on Figure 2 (where i and j denote the length of the corresponding paths
and i ≥ 1, j ∈ {2, 3, 4} hold.)
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Proof. Each of these graphs is a proper subgraph of some Smith graph. This
implies two properties of such graph: (1) it is a tree; (2) there is exactly one vertex
of degree 3 and every other vertex has degree 1 or 2. By using this properties, we
easily obtain displayed family.

Lemma 2. A graph G of order n belongs to Mn,2 if and only if every its component
is one of graphs displayed on Figure 1 or Figure 2, where at most one component
is isomorphic to the first graph of Figure 2.

Proof. This statement is an immediate consequence of definition of the set Mn,2,
well known properties of Smith graphs and the previous lemma. Two components
cannot be isomorphic to the first graph of Figure 2, because of maximality of graph
G. Namely, two such components can be joined by an edge such that they become
one of Smith graphs.

3. SOME COMPUTATIONAL RESULTS

The maximal graphs with property r ≤ 2 enable us to treat the case m = 2
(even less, we prove Theorem 1 by using the Smith graphs). Unfortunately, there is
no some general description of maximal graphs in other cases. This fact constrains
our research on graphs with small order and force us to use a computer in our
research. In this way, we obtain the sets Mn,m and solve some cases of the game
by using them. Computational results in these cases are given in the following
table. Three data (the cardinality of set Mn,m, the number of members of Mn,m

which have odd order and the winner of the game) are given in every field.

n\m 3 4 5
5 4 (3), F - -
6 16 (4), S 9 (7), F -
7 54 (35), F 71 (61), F 9 (8), F

n 8 9 10
m = n− 2 25 (24), F 25 (10), ? 66 (61), F

Table 1.

We find that the size of maximal graphs from the set Mn,m has an important
role. For instance, in case n = 8, m = 6 only one maximal graph has an even
number of edges which gives us a reason to suppose that here player F has a
winning strategy and later we succeeded in proving this conjecture. We use a similar
reasoning in other cases. Note that situation quickly becomes too complicated even
for a computer (in sense that it needs much time for solving it, for example, in the
case n = 9, m = 7, which remains open). Clearly, some particular cases can be
solved, but, by author’s opinion, it is hard to believe that the game can be solved in
general. However, some future results in the theory of graph spectra and advances
in computer technology should help in obtaining new results.
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Let us finish this section with some remarks about the general strategy. Sup-
pose that we obtain some graph Ḡ after last move of one player. Then, we can
define the sets:
GF

n, m(Ḡ) = {G : G ∈Mn, m, |E(G)| is odd and Ḡ is a proper subgraph of G},
GS

n, m(Ḡ) = {G : G ∈Mn, m, |E(G)| is even and Ḡ is a proper subgraph of G}.

If the ratio
|GF

n, m(Ḡ)|
|GS

n, m(Ḡ)|
increases during the game, the possibility of F ’s win

increases and viceversa (see Table 1 for the ratio at the beginning of the game).
Hence, F could have the following strategy: playing the move such that mentioned
ratio becomes as big as possible after this move. Furthermore, by including the
calculation in depth, he could play a move such that the ratio becomes biggest
possible after the next k moves. Obviously, this strategy requires huge calculations
and can be applied only with aid of computer.

4. SOME ADDITIONAL DATA

In the previous sections we deal with the sets M=
n, m and M<

n, m. The first of
these sets contains graphs with integer index and we find that there are not very
many such graphs (up to 10 vertices) which are connected. We give the data on
these graphs in Table 2.

Two data (the number of graphs with given order and index, and number of
such graphs which are regular) are given in every field. (More on regular graphs
one can find on http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html.)

There is only one connected graph with index 1 and 17 connected graphs
with index 2 up to order 10 (compare Figure 1). If we add these values to the
sum according to Table 2, we obtain exactly 1328 connected graphs with integer
index up to 10 vertices. Numbers of regular graphs are well known, while the data
for non–regular case are new. These graphs are available on the following address
http://www.matf.bg.ac.yu/∼zstanic/indexdiam.html.

n\r 3 4 5 6 7 8 9
4 1 (1) - - - - - -
5 1 (0) 1 (1) - - - - -
6 2 (2) 1 (1) 1 (1) - - - -
7 5 (0) 3 (2) 1 (0) 1 (1) - - -
8 18 (5) 20 (6) 8 (3) 1 (1) 1 (1) - -
9 36 (0) 103 (16) 18 (0) 11 (4) 1 (0) 1 (1) -
10 135 (19) 582 (59) 256 (60) 91 (21) 8 (5) 2 (1) 1 (1)

Table 2.
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