
symmetryS S

Article

Inequalities for Laplacian Eigenvalues of Signed Graphs with
Given Frustration Number
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Abstract: Balanced signed graphs appear in the context of social groups with symmetric relations
between individuals where a positive edge represents friendship and a negative edge represents
enmities between the individuals. The frustration number f of a signed graph is the size of the
minimal set F of vertices whose removal results in a balanced signed graph; hence, a connected
signed graph Ġ is balanced if and only if f = 0. In this paper, we consider the balance of Ġ via the
relationships between the frustration number and eigenvalues of the symmetric Laplacian matrix
associated with Ġ. It is known that a signed graph is balanced if and only if its least Laplacian
eigenvalue µn is zero. We consider the inequalities that involve certain Laplacian eigenvalues, the
frustration number f and some related invariants such as the cut size of F and its average vertex
degree. In particular, we consider the interplay between µn and f .

Keywords: frustration number; balanced signed graph; switching equivalence; Laplacian eigenvalues
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1. Introduction

For a simple undirected graph G = (V(G), E(G)), let σ : E(G) −→ {−1,+1}. Then
Ġ = (G, σ) is a signed graph, G is the corresponding underlying graph and σ is a sign
function (defined on the edge set). We set n = |V(Ġ)| and m = |E(Ġ)|. The edge set E(Ġ)
is composed of subsets containing positive and negative edges, respectively. We interpret
an ordinary unsigned graph as a signed graph in which all edges are positive.

A cycle in a signed graph is called balanced if the number of its negative edges is not
odd. Accordingly, we say that a signed graph or its subgraph is balanced if every cycle in it
(if any) is balanced. A balance is one of the fundamental concepts in the theory of signed
graphs; for more details, see [1,2]. An unbalanced signed graph is also called frustrated
(mostly in physical domain). The minimum number of edges (resp. vertices) to be deleted
such that the signed graph is balanced is called the frustration index (frustration number);
these invariants measure how unbalanced the signed graph is.

An application of signed graphs considers social groups with both positive and
negative symmetric relations between individuals. The simplest approach to study the
behaviour of such a population is to consider a signed graph Ġ in which the vertices
represent the individuals, while positive edges represent friendships and negative edges
enmities between them. In Heider’s theory of balance [3] a social group is said to be
balanced if the vertices of the corresponding signed graph can be partitioned into two parts,
say X and Y, in such a way that an edge is negative if and only if it joins a vertex in X with
a vertex in Y. It is known that in this case the corresponding signed graph is balanced [1,2].

The Laplacian matrix of Ġ is the symmetric matrix LĠ = DĠ − AĠ, where DĠ is the
diagonal matrix of vertex degrees and AĠ is the standard symmetric adjacency matrix of Ġ.
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The Laplacian eigenvalues of Ġ are identified to be the eigenvalues of LĠ. They are denoted
by µ1, µ2, . . . , µn and indexed non-increasingly. As LĠ is positive semidefinite, Laplacian
eigenvalues are non-negative.

The interplay between the eigenvalues of a matrix associated with a signed graph
Ġ and structural parameters of Ġ has received a great deal of attention in literature (not
listed here). In particular, relationships between the eigenvalues and the frustration index
are considered in [4–7]. On the other hand, there is a very restricted number of results
concerning relationships between the eigenvalues and the frustration number; some of
them can be found in [4,8]. This motivates us to establish certain inequalities which
estimate particular Laplacian eigenvalues in terms of the frustration number (in this
paper, denoted by f ) and some related structural parameters. Needles to add, all of them
can be seen as estimations of the mentioned structural parameters in terms of the the
corresponding eigenvalues. The latter is of particular interest since there are efficient
polynomial algorithms for computing eigenvalues, while in general the frustration number
is hardly determined.

Our contribution is reported in Section 2. Proofs are separated in Section 3. Some
concluding remarks are given in Section 4.

2. Our Contribution

For a vertex subset S, we write Ġ[S] and Ġ− S to denote the subgraph induced by
S and the subgraph obtained by removing all vertices of S, respectively. We also write
m(S) for the number of edges in Ġ[S] and c(S) for the cut size of S, i.e., the number of
edges of Ġ with one end in S and the other in V(Ġ) \ S. The average vertex degree in S is
denoted by dS. In other words, dS = 1

|S| ∑i∈S di, where di is the degree of the vertex i in Ġ.

In particular, we use F to denote a minimal set of vertices of Ġ to be removed such that the
resulting signed graph is balanced. Clearly, |F| is the frustration number f of Ġ.

In Section 3, we prove the following results.

Theorem 1. For a signed graph Ġ with n vertices and the frustration number f ,

µ1 + µ2 ≥
1

n− f
c(F) + dF, (1)

where F denotes a minimal set of vertices whose removal results in a balanced signed graph.

The inequality (1) is of the Nordhaus–Gaddum type and gives a relationship between
the sum of the two largest Laplacian eigenvalues in terms of f , c(F) and dF. We also
consider the least Laplacian eigenvalue in the following two results.

Theorem 2. For a signed graph Ġ with n vertices and the frustration number f ,

µn ≤
1
n

( f
n− f

c(F) + (n− f )dF

)
, (2)

where F denotes a minimal set of vertices whose removal results in a balanced signed graph.

Theorem 3. For a signed graph Ġ with n vertices and the frustration number f ,

µn ≤
1
n
(
c(F) + f dF

)
, (3)

where F denotes a minimal set of vertices whose removal results in a balanced signed graph. Equality
holds if Ġ is balanced.
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In [4] Belardo gave an elegant upper bound for µn,

µn ≤ f . (4)

It can be easily verified that the upper bounds (2)–(4) are incomparable. The in-
equalities (3) and (4) immediately give that f = 0 implies µn = 0; this and the opposite
implication, in the case of a connected signed graph, can be found in a work of Zaslavsky [2].
For Ġ regular with vertex degree r, in (1)–(3), dF can be replaced by r.

We also consider the sum of the first k Laplacian eigenvalues in a particular case.

Theorem 4. If a signed graph Ġ with vertex set {1, 2, . . . , n} does not contain unbalanced cycles
of length at most l, then for every partition V(Ġ) = S1 t S2 t · · · t Sk, such that |Si| ≤ l − 1, for
1 ≤ i ≤ k, we have

k

∑
i=1

µi ≥ −2
k

∑
i=1

mi
|Si|

+ ∑
j : i∈Sj

di
|Sj|

,

where mi = m(Si).

3. Proofs

We resume the notation introduced in the previous sections and also use m− and
m± (or m−(Ġ) and m±(Ġ)) to denote the number of negative edges and the difference of
the numbers of positive and negative edges in Ġ, respectively. For a vertex subset S, for
the sake of simplicity, we write m−(S) and m±(S) for m−(Ġ[S]) and m±(Ġ[S]). Similarly,
c−(S) (resp. c±(S)) stands for the number of negative edges (the difference of the numbers
of positive and negative edges) of Ġ[S] with exactly one end in S.

The signed graph ĠS obtained from Ġ by reversing the sign of each edge with exactly
one end in S is said to be switching equivalent to Ġ. Switching equivalent signed graphs
share the same (Laplacian) eigenvalues, which is one of building blocks in the forthcoming
proofs. We also apply the following Lemma 1, its consequence formulated in Corollary 1,
Theorem 5 obtained by Bollobás and Nikiforov [9] and the Rayleigh principle.

Lemma 1. For every signed graph Ġ with m (m ≥ 1) edges, there exists a switching equivalent
signed graph with m± > 0 and another switching equivalent signed graph with m± < 0.

Proof. We consider the first part, i.e., construct a switching equivalent signed graph with
m± > 0. Up to the switching equivalence, Ġ has a positive edge, and then there exists a
partition of V(Ġ), say T1 t T2 t · · · t Tk, such that there is no negative edge in any G[Ti]’s
and at least one of them contains a (positive) edge.

If c±(Ti) ≥ 0, for 1 ≤ i ≤ k, we are done. Otherwise, we arrive at the desired
switching equivalent signed graph by the following iterative algorithm. Take any Ti for
which c±(Ti) < 0 and make a switching with respect to Ti. Clearly, all the edges (if any) in
Ti remain positive, while c±(Ti) becomes positive. Continue with the next such a Ti. Since
every step is followed by a strict decreasing in the total number of negative edges, after a
finite repetition we arrive at the result.

Interchanging the roles of positive and negative edges in the previous part of the
proof, we arrive at the proof of the second part of the lemma.

A similar result can be found in [10]. Applying the algorithm described in the previous
proof, we can obtain some specified switching equivalent signed graphs. Two of them,
which will be used in the forthcoming proofs, are pointed out in the next corollary.

Corollary 1. For every vertex set partition S1 t S2 t · · · t Sk (1 ≤ k ≤ n) of a signed graph

(i) there exists a switching equivalent signed graph in which 2m−(Si) ≥ m(Si) and
(ii) there exists a switching equivalent signed graph in which 2m−(Si) ≤ m(Si) and 2c−(Si) ≥

c(Si),
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for 1 ≤ i ≤ k.
The first inequality in (i) and (ii) is strict whenever Si induces a signed graph with at least one

edge.

Proof. Observe that the algorithm described in the proof of Lemma 1 (or its counterpart
with positive and negative edges interchanged) can be applied irrespectively of any sub-
graph induced by Si, for 1 ≤ i ≤ k. In this way we arrive at the inequality of (i) and the
first inequality of (ii), which are strict whenever Si induces a signed graph with at least one
edge.

To conclude (ii), we apply the same algorithm once again, but now with respect to the
partition S1 t S2 t · · · t Sk.

We quote the following result.

Theorem 5. [9] Let M = (mij) be a Hermitian matrix of size n and with eigenvalues ν1, ν2, . . . , νn
taken with their repetition and indexed non-increasingly. For every partition {1, 2, . . . , n} =
S1 t S2 t · · · t Sk (2 ≤ k ≤ n), we have

k

∑
i=1

νi ≥
k

∑
i=1

1
|Si| ∑

i,j∈Si

mij

and
n

∑
i=n−k+2

νi ≤
k

∑
i=1

1
|Si| ∑

i,j∈Si

mij −
1
n

sum(M),

where sum(M) denotes the sum of the entries of M.

Taking the Laplacian matrix of a signed graph we arrive at the following.

Theorem 6. Let Ġ be a signed graph with n vertices, m edges, Laplacian eigenvalues µ1, µ2, . . . , µn
and the partition V(Ġ) = S1 t S2 t · · · t Sk (2 ≤ k ≤ n). Then, it holds

k

∑
i=1

µi ≥ −2
k

∑
i=1

m±i
|Si|

+ ∑
j : i∈Sj

di
|Sj|

(5)

and
n

∑
i=n−k+2

µi ≤ −2
( k

∑
i=1

m±i
|Si|

+
(m−m±)

n

)
+ ∑

j : i∈Sj

di
|Sj|

, (6)

with m± = m±(Ġ) and m±i = m±i (Si).

Proof. This follows directly from Theorem 5.

We are ready to prove the announced results.

Proof of Theorem 1. Let F be a minimal set of vertices whose removal results in a balanced
signed graph. Without loss of generality, we may assume that all the edges of Ġ− F are
positive, and in that case we denote this subgraph by H. Using Theorem 6, we compute

µ1 + µ2 ≥ − 2
( 1

n− f
m(H) +

1
f

m±(F)
)
+

1
n− f ∑

i∈V(H)

di +
1
f ∑

i∈F
di

=
1

n− f
c(F) +

1
f
(
− 2m±(F) + 2m(F) + c(F)

)
=
( 1

n− f
+

1
f

)
c(F) +

4
f

m−(F),
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giving

µ1 + µ2 ≥
1
f

( n
n− f

c(F) + 4m−(F)
)

.

This inequality holds for every signed graph belonging to the switching class of Ġ
and in which the edges of H remain positive. Selecting such a signed graph with largest
m−(F), and using Corollary 1(i), we obtain

µ1 + µ2 ≥
1
f

( n
n− f

c(F) + 2m(F)
)

.

Further, as c(F) + 2m(F) = dF f , we get

µ1 + µ2 ≥
1
f

( n
n− f

c(F)− c(F) + c(F) + 2m(F)
)

=
1
f

( f
n− f

c(F) + dF f
)

=
1

n− f
c(F) + dF,

and we are done.

Proof of Theorem 2. Let H be as in the proof of Theorem 1. By Theorem 6 (for k = 2), we
get

µn ≤ − 2
( 1

n− f
m(H) +

1
f

m±(F)
)
+

1
n− f ∑

i∈V(H)

di +
1
f ∑

i∈F
di −

1
n

sum(LĠ)

=
( 1

n− f
+

1
f

)
c(F) +

4
f

m−(F)− 4
n
(
c−(F) + m−(F)

)
,

giving

µn ≤
( n

f (n− f )

)
c(F)− 4

n

(
c−(F)− (n− f )

f
m−(F)

)
. (7)

This inequality holds for switching equivalent signed graphs with minimum m−(F)
(which, by Corollary 1(ii), does not exceed 1

2 m(F)), and among them for those with maxi-
mum c−(F) (which, by Corollary 1(ii), is not less than 1

2 c(F)). Hence,

µn ≤
( n

f (n− f )

)
c(F)− 2

n

(
c(F)− (n− f )

f
m(F)

)
=
( n

f (n− f )

)
c(F)− 2

n

(
c(F)− (n− f )

f
m(F)

)
+

n− f
f n

c(F)− n− f
f n

c(F)

=
1
n

( f
n− f

c(F) + (n− f )dF

)
,

and we are done.

The next proof is based on the Rayleigh principle.

Proof of Theorem 3. As in the previous proofs, without loss of generality, we may assume
that the edges with both ends outside F are all positive. If j is the all-1 vector, then using
the Rayleigh principle, we obtain

µn ≤
jT LĠj

jTj
=

4
n
(c−(F) + m−(F))

≤ 2
n
(c(F) + m( f )) =

1
n
(c(F) + f dF),
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where for the latter inequality we switch into a signed graph in which 2c−(F) ≤ c(F) and
2m−(F) ≤ m(F) (obtained as those of Corollary 1). If Ġ is balanced, then µn = 0 [2], and
also F is empty, giving the equality.

Proof of Theorem 4. Since |Si| ≤ l − 1, we have that Ġ[Si] does not contain unbalanced
cycles, i.e., it is a balanced subgraph. In that case, Ġ switches into a signed graph in which
Ġ[Si] does not contain a negative edge. The result follows by Theorem 6.

4. Concluding Remarks

As switching equivalent signed graphs share the same spectrum, it follows that the
inequality (5) of Theorem 6 can be written as

k

∑
i=1

µi ≥ −2 min
{ k

∑
i=1

m±i
|Si|

: Ḣ ∈ G
}
+ ∑

j : i∈Sj

di
|Sj|

,

where G denotes the switching class of Ġ, and similarly for the inequality (6) of the same
theorem. Applying Lemma 1 to every Ġ[Si], we transform (5) into

k

∑
i=1

µi ≥ ∑
m(Si) 6=∅

2
|Si|

+ ∑
j : i∈Sj

di
|Sj|

,

and, again, similarly for (6). Finally, by the corresponding theorem, (5) holds for k ≥ 2. Of
course, using the Rayleigh principle, we get

µ1 ≥
jT LĠj

jTj
=

2(−m± + m)

n
, (8)

and so it also holds for k = 1. Moreover, by (8), we have

µ1 ≥
4m−

n
.

If Ġ has at least one edge, then by Lemma 1, there exists a switching equivalent signed
graph satisfying m− ≥

⌊m
2 + 1

⌋
, which gives

µ1 ≥
4
⌊m+2

2
⌋

n
.

A natural and, in this case, difficult question is how tight the inequalities proved in
the previous section are. Our numerical experiments show that for appropriately chosen
signed graphs they can give a good estimate. For example, taking the complete signed
graph with all the edges being negative, we get f = n− 2, c(F) = 2(n− 2), dF = n− 1,
and hence, by (2), we get

µn ≤
1
n
((n− 2)2 + 2(n− 1)).

Say, for n = 6, this gives 4 = µ6 ≤ 4.33.
Regarding the inequality (7) observe that the minimum of m−(F) in the switching

class of Ġ is equal to the minimum number ` of edges of F whose removal results in a
balanced subgraph of Ġ[F]; we have mentioned in Section 1 that this invariant is known as
the frustration index of Ġ[F]. Thus, by replacing m−(F) with `(F) in (7), we get
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µn ≤
( n

f (n− f )

)
c(F)− 2

n
c(F) + 4

(n− f )
f n

`(F)

=
( 1

n− f
+

1
f
− 2

n

)
c(F) + 4

(n− f )
f n

`(F)

≤
( 1

n− 1
+ 1− 2

n

)
c(F) + 4

(n− 1)
n

`(F)

≤ 1
n

(n2 + 2
n− 1

c(F) + 4(n + 1)`(F)
)

,

giving an estimate in terms of c(F) and `(F).
All the foregoing results can be formulated in the case of the spectrum of the adjacency

matrix. For example, the counterpart to Theorem 4 reads as follows.

Theorem 7. If a signed graph Ġ with non-increasingly indexed eigenvalues (of the adjacency
matrix) λ1, λ2, . . . , λn does not contain unbalanced cycles of length at most l, then for every
partition V(Ġ) = S1 t S2 t · · · t Sk, such that |Si| ≤ l − 1, for 1 ≤ i ≤ k, we have

k

∑
i=1

λi ≥ 2
k

∑
i=1

mi
|Si|

with mi = m(Si).

Along with an analogous proof. Since Theorem 4 and its counterpart require a
particular structure of a signed graph, it is natural to ask whether such a cyclic structure
can be determined by some spectral invariants. We prove that this can be done by means
of the eigenvalues of Ġ and the eigenvalues of its underlying graph. Recall that a walk in a
signed graph is a sequence of alternate vertices and edges such that consecutive vertices
are incident with the corresponding edge. A walk is positive if the number of its negative
edges (counted with their multiplicity if there are repeated edges) is not odd. Otherwise, it
is negative.

Theorem 8. If λ1(Ġ), λ2(Ġ), . . . , λn(Ġ) and λ1(G), λ2(G), . . . , λn(G) are the eigenvalues of a
signed graph Ġ and the eigenvalues of its underlying graph G, respectively, and k is the smallest
non-negative integer such that ∑n

i=1 λi(G)k 6= ∑n
i=1 λi(Ġ)k. Then

(i) Ġ does not contain an unbalanced cycle whose length is less than k and
(ii) ∑n

i=1 λi(G)k −∑n
i=1 λi(Ġ)k = 4kuk, where uk denotes the number of unbalanced cycles of

length k in Ġ.

Proof. (i) Assume the contrary and let l (l < k) be the length of the shortest unbalanced
cycle in Ġ.

Recall that ∑n
i=1 λi(G)l and ∑n

i=1 λi(Ġ)l stand for the number of closed walks of length
l in G and the difference of positive and negative closed walks of length l in Ġ, respectively.
We divide closed walks of length l into the two types: those which do not traverse a cycle
of length l and those which do. By the choice of l, we have that the number of walks of
the first type in G is equal to the difference of positive and negative walks of the same
type in Ġ. If nl denotes the number of cycles of length l in G, then the number of walks
of the second type in G is 2lnl , while the difference of positive and negative ones in Ġ
is 2l(nl − 2ul) (ul being the number of unbalanced cycles of length l). Hence,

n

∑
i=1

λi(G)l −
n

∑
i=1

λi(Ġ)l = 4lul > 0,

contradicting the assumption of the theorem.
(ii) By setting l = k in the previous part of the proof, we get the desired equality.
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